Patents by Inventor Chung-Wei Wu

Chung-Wei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230387240
    Abstract: Source/drain silicide that improves performance and methods for fabricating such are disclosed herein. An exemplary device includes a first channel layer disposed over a substrate, a second channel layer disposed over the first channel layer, and a gate stack that surrounds the first channel layer and the second channel layer. A source/drain feature disposed adjacent the first channel layer, second channel layer, and gate stack. The source/drain feature is disposed over first facets of the first channel layer and second facets of the second channel layer. The first facets and the second facets have a (111) crystallographic orientation. An inner spacer disposed between the gate stack and the source/drain feature and between the first channel layer and the second channel layer. A silicide feature is disposed over the source/drain feature where the silicide feature extends into the source/drain feature towards the substrate to a depth of the first channel layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Chih-Ching Wang, Chung-I Yang, Jon-Hsu Ho, Wen-Hsing Hsieh, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20230387301
    Abstract: A method includes receiving a semiconductor substrate. The semiconductor substrate has a top surface and includes a semiconductor element. Moreover, the semiconductor substrate has a fin structure formed thereon. The method also includes recessing the fin structure to form source/drain trenches, forming a first dielectric layer over the recessed fin structure in the source/drain trenches, implanting a dopant element into a portion of the fin structure beneath a bottom surface of the source/drain trenches to form an amorphous semiconductor layer, forming a second dielectric layer over the recessed fin structure in the source/drain trenches, annealing the semiconductor substrate, and removing the first and second dielectric layers. After the annealing and the removing steps, the method further includes further recessing the recessed fin structure to provide a top surface. Additionally, the method includes forming an epitaxial layer from and on the top surface.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Chih-Ching Wang, Wen-Yuan Chen, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20230367225
    Abstract: A photolithography system utilizes tin droplets to generate extreme ultraviolet radiation for photolithography. The photolithography system irradiates the droplets with a laser. The droplets become a plasma and emit extreme ultraviolet radiation. The photolithography system senses contamination of a collector mirror by the tin droplets and adjusts the flow of a buffer fluid to reduce the contamination.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Inventors: Tai-Yu CHEN, Sagar Deepak KHIVSARA, Kuo-An LIU, Chieh HSIEH, Shang-Chieh CHIEN, Gwan-Sin CHANG, Kai Tak LAM, Li-Jui CHEN, Heng-Hsin LIU, Chung-Wei WU, Zhiqiang WU
  • Publication number: 20230335617
    Abstract: A method includes forming a dielectric layer over a substrate; forming a carbon nanotube (CNT) over the dielectric layer; forming a dummy gate structure over the CNT; forming gate spacers on opposite sidewalls of the dummy gate structure; forming source/drain epitaxy structures on opposite sides of the dummy gate structure and in contact with opposite sidewalls of the CNT; replacing the dummy gate structure with a metal gate structure; and forming source/drain contacts over the source/drain epitaxy structures, respectively.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 19, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mahaveer Sathaiya DHANYAKUMAR, Cheng-Ting CHUNG, Chien-Hong CHEN, Jin CAI, Chung-Wei WU
  • Publication number: 20230326510
    Abstract: A semiconductor device comprises a first conductive structure extending along a vertical direction and a second conductive structure extending along the vertical direction. The second conductive structure is spaced apart from the first conductive structure along a lateral direction. The semiconductor device further comprises a plurality of third conductive structures each extending along the lateral direction. The plurality of third conductive structures are disposed across the first and second conductive structures. The first and second conductive structures each have a varying width along the lateral direction. The plurality of third conductive structures are configured to be applied with respective different voltages in accordance with the varying width of the first and second conductive structures.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Chun Liou, Zhiqiang Wu, Chung-Wei Wu, Yi-Ching Liu, Yih Wang
  • Publication number: 20230320102
    Abstract: A semiconductor memory device includes a stack of alternating insulating layers and first conductive layers disposed over a substrate; a plurality of memory cell strings penetrating the stack over the substrate, each memory cell string comprising a central portion extending through the stack, a semiconductor layer surrounding the central portion, and a ferroelectric layer surrounding the semiconductor layer, and the central portion comprising a channel isolation structure and a second conductive layer and a third conductive layer at two sides of the channel isolation structure; and a plurality of cell isolation structures penetrating the conductive layers and the insulating layers over the substrate and disposed between two memory cell strings, each cell isolation structure comprising a top portion and a bottom portion adjoined to the top portion and different from the top portion.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: YU-CHIEN CHIU, MENG-HAN LIN, CHUN-FU CHENG, HAN-JONG CHIA, CHUNG-WEI WU, ZHIQIANG WU
  • Patent number: 11768437
    Abstract: A photolithography system utilizes tin droplets to generate extreme ultraviolet radiation for photolithography. The photolithography system irradiates the droplets with a laser. The droplets become a plasma and emit extreme ultraviolet radiation. The photolithography system senses contamination of a collector mirror by the tin droplets and adjusts the flow of a buffer fluid to reduce the contamination.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-Yu Chen, Sagar Deepak Khivsara, Kuo-An Liu, Chieh Hsieh, Shang-Chieh Chien, Gwan-Sin Chang, Kai Tak Lam, Li-Jui Chen, Heng-Hsin Liu, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11756959
    Abstract: The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu
  • Publication number: 20230262986
    Abstract: A ferroelectric memory device includes a semiconductor structure, a stack structure disposed on the semiconductor structure and including multiple dielectric layers and multiple conductive layers that are alternatingly stacked, and multiple memory arrays extending through the stack structure. Each of the memory arrays includes two spaced-apart memory segments connecting to the stack structure, multiple spaced-apart channel portions each being connected to a corresponding one of the memory segments, and multiple pairs of source/bit lines that are spaced apart from each other. Each of the pairs of the source/bit lines is connected between corresponding two of the channel portions. The ferroelectric memory device further includes multiple carrier structures each being connected to one of the source/bit lines in a corresponding one of the pairs of the source/bit lines, and being separated from the other one of the source/bit lines in the corresponding one of the pairs of the source/bit lines.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 17, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Ling LU, Chia-En HUANG, Ya-Yun CHENG, Yi-Ching LIU, Huan-Sheng WEI, Chung-Wei WU
  • Publication number: 20230246026
    Abstract: A semiconductor device structure includes a dielectric layer, a first source/drain feature in contact with the dielectric layer, wherein the first source/drain feature comprises a first sidewall. The structure also includes a second source/drain feature in contact with the dielectric layer and adjacent to the first source/drain feature, wherein the second source/drain feature comprises a second sidewall. The structure also includes an insulating layer disposed over the dielectric layer and between the first sidewall and the second sidewall, wherein the insulating layer comprises a first surface facing the first sidewall, a second surface facing the second sidewall, a third surface connecting the first surface and the second surface, and a fourth surface opposite the third surface. The structure further includes a sealing material disposed between the first sidewall and the first surface, wherein the sealing material, the first sidewall, the first surface, and the dielectric layer are exposed to an air gap.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Chih-Ching WANG, Chun-Chung SU, Chung-Wei WU, Jon-Hsu HO, Kuan-Lun CHENG, Wen-Hsing HSIEH, Wen-Yuan CHEN, Zhi-Qiang WU
  • Patent number: 11716857
    Abstract: A semiconductor memory device includes a stack of alternating insulating layers and first conductive layers disposed over a substrate; a plurality of memory cell strings penetrating the stack over the substrate, each memory cell string comprising a central portion extending through the stack, a semiconductor layer surrounding the central portion, and a ferroelectric layer surrounding the semiconductor layer, and the central portion comprising a channel isolation structure and a second conductive layer and a third conductive layer at two sides of the channel isolation structure; and a plurality of cell isolation structures penetrating the conductive layers and the insulating layers over the substrate and disposed between two memory cell strings, each cell isolation structure comprising a top portion and a bottom portion adjoined to the top portion and different from the top portion.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Chien Chiu, Meng-Han Lin, Chun-Fu Cheng, Han-Jong Chia, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11705177
    Abstract: A semiconductor device comprises a first conductive structure extending along a vertical direction and a second conductive structure extending along the vertical direction. The second conductive structure is spaced apart from the first conductive structure along a lateral direction. The semiconductor device further comprises a plurality of third conductive structures each extending along the lateral direction. The plurality of third conductive structures are disposed across the first and second conductive structures. The first and second conductive structures each have a varying width along the lateral direction. The plurality of third conductive structures are configured to be applied with respective different voltages in accordance with the varying width of the first and second conductive structures.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Peng-Chun Liou, Zhiqiang Wu, Chung-Wei Wu, Yi-Ching Liu, Yih Wang
  • Publication number: 20230225130
    Abstract: A ferroelectric memory device includes a multi-layer stack, a ferroelectric layer, and channel layers. The multi-layer stack is disposed on a substrate and includes conductive layers and dielectric layers stacked alternately. The ferroelectric layer has a curvy profile and is disposed along sidewalls of the conducive layers and sidewalls of the dielectric layers. The channel layers are separated from each other and disposed on the ferroelectric layer, and correspond to the conductive layers respectively.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Chun Liou, Zhiqiang Wu, Chung-Wei Wu, Ya-Yun Cheng
  • Publication number: 20230178603
    Abstract: Embodiments of the present disclosure relate to forming a nanosheet multi-channel device with an additional spacing layer and a hard mask layer. The additional spacing layer provides a space for an inner spacer above the topmost channel. The hard mask layer functions as an etch stop during metal gate etch back, providing improve gate height control.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Inventors: Shin-Jiun Kuang, Meng-Yu Lin, Chun-Fu Cheng, Chung-Wei WU
  • Publication number: 20230155008
    Abstract: Embodiments of the present disclosure includes a semiconductor device. The semiconductor device includes first suspended nanostructures vertically stacked over one another and disposed on a substrate, a first gate stack engaging the first suspended nanostructures, a first gate spacer disposed on sidewalls of the first gate stack, second suspended nanostructures vertically stacked over one another and disposed on the substrate, a second gate stack engaging the second suspended nanostructures, and a second gate spacer disposed on sidewalls of the second gate stack. A middle portion of the first suspended nanostructures has a first thickness measured in a direction perpendicular to a top surface of the substrate. A middle portion of the second suspended nanostructures has a second thickness measured in the direction. The second thickness is smaller than the first thickness.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: Chih-Ching Wang, Chia-Ying Su, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20230123846
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. The method includes forming a stack of first semiconductor layers and second semiconductor layers over a substrate, etching the stack to form a source/drain (S/D) recess in exposing the substrate, and forming an S/D formation assistance region in the S/D recess. The S/D formation assistance region is partially embedded in the substrate and includes a semiconductor seed layer embedded in an isolation layer. The isolation layer electrically isolates the semiconductor seed layer from the substrate. The method also includes epitaxially growing an S/D feature in the S/D recess from the semiconductor seed layer. The S/D feature is in physical contact with the second semiconductor layers.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 20, 2023
    Inventors: Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11626400
    Abstract: A semiconductor device structure includes a dielectric layer, a first source/drain feature in contact with the dielectric layer, wherein the first source/drain feature comprises a first sidewall, and a second source/drain feature in contact with the dielectric layer and adjacent to the first source/drain feature, wherein the second source/drain feature comprises a second sidewall. The structure also includes an insulating layer disposed over the dielectric layer and between the first sidewall and the second sidewall, wherein the insulating layer comprises a first surface facing the first sidewall, a second surface facing the second sidewall, a third surface connecting the first surface and the second surface, and a fourth surface opposite the third surface. The structure includes a sealing material disposed between the first sidewall and the first surface, wherein the sealing material, the first sidewall, the first surface, and the dielectric layer are exposed to an air gap.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Ching Wang, Wen-Yuan Chen, Chun Chung Su, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20230104442
    Abstract: A semiconductor structure includes a substrate and a semiconductor channel layer over the substrate. The semiconductor structure includes a high-k gate dielectric layer over the semiconductor channel layer, a work function metal layer over the high-k gate dielectric layer, and a bulk metal layer over the work function metal layer. The work function metal layer includes a first portion and a second portion over the first portion. Both the first portion and the second portion are conductive. Materials included in the second portion are also included in the first portion. The first portion is doped with silicon at a first dopant concentration, and the second portion is not doped with silicon or is doped with silicon at a second dopant concentration lower than the first dopant concentration.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Yen-Tien Tung, Szu-Wei Huang, Zhi-Ren Xiao, Yin-Chuan Chuang, Yung-Chien Huang, Kuan-Ting Liu, Tzer-Min Shen, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11618169
    Abstract: A method for determining coordinates of a mechanical arm includes taking a first picture of a marker on a target object on a first jig, obtaining first position coordinates of the marker, calculating reference position coordinates, controlling the mechanical arm to move to the reference position coordinates, moving the mechanical arm from the reference position coordinates to an intermediate position, setting current position coordinates as intermediate position coordinates, moving the mechanical arm from the intermediate position to a target position, setting current position coordinates as target position coordinates, moving the target object onto a second jig, taking a second picture of the marker to obtain second position coordinates, calculating reference position coordinates based on the second position coordinates, controlling the mechanical arm to move to the reference position coordinates, calculating intermediate position coordinates corresponding to the second jig, and calculating target position c
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: April 4, 2023
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventors: Chung-Wei Wu, Tung-Chun Hsieh, Chih-Wei Li, Sung-Chuan Lee, Tze-Chin Lo
  • Publication number: 20230042480
    Abstract: Semiconductor device includes a substrate having multiple fins formed from a substrate, a first source/drain feature comprising a first epitaxial layer in contact with a first fin, a second epitaxial layer formed on the first epitaxial layer, and a third epitaxial layer formed on the second epitaxial layer, the third epitaxial layer comprising a center portion and an edge portion that is at a different height than the center portion; a fourth epitaxial layer formed on the third epitaxial layer, a second source/drain feature adjacent the first source/drain feature, comprising a first epitaxial layer in contact with a second fin, a second epitaxial layer formed on the first epitaxial layer of the second source/drain feature, a third epitaxial layer formed on the second epitaxial layer of the second source/drain feature, the third epitaxial layer comprising a center portion and an edge portion that is at a different height than the center portion of the third epitaxial layer of the second source/drain feature; a
    Type: Application
    Filed: October 14, 2022
    Publication date: February 9, 2023
    Inventors: Wei Ju LEE, Chun-Fu CHENG, Chung-Wei WU, Zhiqiang WU