Patents by Inventor Chunhu Tan

Chunhu Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967678
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: April 23, 2024
    Assignee: Solid Energies, Inc.
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11955595
    Abstract: A ceramic-polymer film includes a polymer matrix; a plasticizer; a lithium salt; and AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0.01 to 1 (LLZO), wherein the LLZO are nanoparticles with diameters that range from 20 to 2000 nm and wherein the film has an ionic conductivity of greater than 1×10?3 S/cm at room temperature. The nanocomposite film can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. The film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical cells and batteries. The LLZO serves as a barrier to dendrite growth.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 9, 2024
    Assignee: Bioenno Tech LLC
    Inventors: Zhigang Lin, Chunhu Tan, Chao Yi
  • Publication number: 20230395843
    Abstract: A ceramic-polymer film includes a polymer matrix; a plasticizer; a lithium salt; and AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0.01 to 1 (LLZO), wherein the LLZO are nanoparticles with diameters that range from 20 to 2000 nm and wherein the film has an ionic conductivity of greater than 1×10?3 S/cm at room temperature. The nanocomposite film can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. The film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical cells and batteries. The LLZO serves as a barrier to dendrite growth.
    Type: Application
    Filed: July 14, 2023
    Publication date: December 7, 2023
    Inventors: Zhigang Lin, Chunhu Tan, Chao Yi
  • Publication number: 20230155168
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Application
    Filed: January 16, 2023
    Publication date: May 18, 2023
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11588176
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: February 21, 2023
    Assignee: Bioenno Tech LLC
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11430711
    Abstract: A high performance, lead free, Ag paste thermal interface material (TIM) for die attachment and substrate bonding in electronic packaging includes: (i) multiscale silver particles, (ii) metal-coated carbon nanotubes (CNTs), (iii) a polymer, and (iv) a liquid carrier. The multiscale silver particles and metal-coated carbon nanotubes, which function as hybrid filler components, are uniformly dispersed within the TIM composition. The sintered TIM exhibits high density, high mechanical strength, and high thermal conductivity. The components of the liquid carrier including the solvent, binder, surfactants, and thinner are completely evaporated or burned off during sintering. Sintering of the TIM can be conducted at a relatively low temperature, without or with very low (<0.1 MPa) pressure, in open air and without vacuum or inert gas protection. The TIM can be utilized in substrate bonding not only on conventional metal-plated surfaces but also bare Cu substrate surfaces.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 30, 2022
    Assignee: Aegis Technology Inc.
    Inventors: Zhigang Lin, Chunhu Tan, Shuyi Chen
  • Publication number: 20220216505
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11223088
    Abstract: Ceramic-polymer film includes a polymer matrix, plasticizers, a lithium salt, and a ceramic nanoparticle, LLZO: AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0 to 0.85. The nanoparticles have diameters that range from 20 to 2000 nm and the film has an ionic conductivity of greater than 1×10?4 S/cm (?20° C. to 10° C.) and larger than 1×10?3 S/cm (?20° C.). Using a combination of selected plasticizers to tune the ionic transport temperature dependence enables the battery based on the ceramic-polymer film to be operable in a wide temperature window (?40° C. to 90° C.). Large size nanocomposite film (area ?8 cm×6 cm) can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. This large size film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical pouch cell and further assembled into battery packs.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 11, 2022
    Assignee: BIOENNO TECH LLC
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng, Shuyi Chen, Kevin Zanjani
  • Patent number: 11094463
    Abstract: Spherical ceramic-glass nanocomposite dielectrics made from ceramics and glasses that are separately pre-milled by mechanical ball milling using selected ball-to-powder weight ratios and combined to form a mixture that is ball milled. A stable liquid suspension of the milled mixture including an added dispersant such as polyacrylic acid to improve uniformity is spray dried through a nozzle and recovered product is annealed. The novel dielectrics have a microstructure where ceramic primary particles are uniformly distributed and fully embedded in a glass matrix. The dielectrics have a mean particle size of about 1-20 um and a sphericity of about 0.8 or higher which are suitable for fabricating multilayer ceramic capacitors for high temperature applications. The novel dielectrics afford decreased sintering temperature, enhanced breakdown strength, lower dielectric lose tangent, and lower costs.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: August 17, 2021
    Assignee: Aegis Technology Inc.
    Inventors: Zhigang Lin, Chunhu Tan
  • Publication number: 20210159144
    Abstract: A high performance, lead free, Ag paste thermal interface material (TIM) for die attachment and substrate bonding in electronic packaging includes: (i) multiscale silver particles, (ii) metal-coated carbon nanotubes (CNTs), (iii) a polymer, and (iv) a liquid carrier. The multiscale silver particles and metal-coated carbon nanotubes, which function as hybrid filler components, are uniformly dispersed within the TIM composition. The sintered TIM exhibits high density, high mechanical strength, and high thermal conductivity. The components of the liquid carrier including the solvent, binder, surfactants, and thinner are completely evaporated or burned off during sintering. Sintering of the TIM can be conducted at a relatively low temperature, without or with very low (<0.1 MPa) pressure, in open air and without vacuum or inert gas protection. The TIM can be utilized in substrate bonding not only on conventional metal-plated surfaces but also bare Cu substrate surfaces.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Zhigang Lin, Chunhu Tan, Shuyi Chen
  • Publication number: 20210102063
    Abstract: Ceramic-polymer film includes a polymer matrix, plasticizers, a lithium salt, and a ceramic nanoparticle, LLZO: AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0 to 0.85. The nanoparticles have diameters that range from 20 to 2000 nm and the film has an ionic conductivity of greater than 1×10?4 S/cm (?20° C. to 10° C.) and larger than 1×10?3 S/cm (?20° C.). Using a combination of selected plasticizers to tune the ionic transport temperature dependence enables the battery based on the ceramic-polymer film to be operable in a wide temperature window (?40° C. to 90° C.). Large size nanocomposite film (area ?8 cm×6 cm) can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. This large size film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical pouch cell and further assembled into battery packs.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng, Shuyi Chen, Kevin Zanjani
  • Publication number: 20200335814
    Abstract: A ceramic-polymer film includes a polymer matrix; a plasticizer; a lithium salt; and AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0.01 to 1 (LLZO), wherein the LLZO are nanoparticles with diameters that range from 20 to 2000 nm and wherein the film has an ionic conductivity of greater than 1×10?3 S/cm at room temperature. The nanocomposite film can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. The film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical cells and batteries. The LLZO serves as a barrier to dendrite growth.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Zhigang Lin, Chunhu Tan, Chao Yi
  • Publication number: 20200273620
    Abstract: Spherical ceramic-glass nanocomposite dielectrics made from ceramics and glasses that are separately pre-milled by mechanical ball milling using selected ball-to-powder weight ratios and combined to form a mixture that is ball milled. A stable liquid suspension of the milled mixture including an added dispersant such as polyacrylic acid to improve uniformity is spray dried through a nozzle and recovered product is annealed. The novel dielectrics have a microstructure where ceramic primary particles are uniformly distributed and fully embedded in a glass matrix. The dielectrics have a mean particle size of about 1-20 um and a sphericity of about 0.8 or higher which are suitable for fabricating multilayer ceramic capacitors for high temperature applications. The novel dielectrics afford decreased sintering temperature, enhanced breakdown strength, lower dielectric lose tangent, and lower costs.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Zhigang Lin, Chunhu Tan
  • Publication number: 20140295069
    Abstract: Objects of the present invention include creating cathode materials that have high energy density and are cost-effective, environmentally benign, and are able to be charged and discharged at high rates for a large number of cycles over a period of years. One embodiment is a battery material comprised of a doped nanocomposite. The doped nanocomposite may be comprised of Li—Co—PO4; C; and at least one X, where said X is a metal for substituting or doping into LiCoPO4. In certain embodiments, the doped nanocomposite may be LiCoMnPO4/C. Another embodiment of the present invention is a method of creating a battery material comprising the steps of high energy ball milling particles to create complex particles, and sintering said complex particles to create a nanocomposite. The high energy ball milling may dope and composite the particles to create the complex particles.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 2, 2014
    Applicant: Aegis Technology Inc.
    Inventors: Zhigang Lin, Chunhu Tan
  • Patent number: 8511535
    Abstract: A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Aegis Technology Inc.
    Inventors: Quan Yang, Chunhu Tan, Zhigang Lin
  • Publication number: 20130193194
    Abstract: A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 1, 2013
    Applicant: Aegis Technology Inc.
    Inventors: Quan Yang, Chunhu Tan, Zhigang Lin
  • Publication number: 20130062573
    Abstract: Objects of the present invention include creating cathode materials that have high energy density and are cost-effective, environmentally benign, and are able to be charged and discharged at high rates for a large number of cycles over a period of years. One embodiment is a battery material comprised of a doped nanocomposite. The doped nanocomposite may be comprised of Li—Co—PO4; C; and at least one X, where said X is a metal for substituting or doping into LiCoPO4. In certain embodiments, the doped nanocomposite may be LiCoMnPO4/C. Another embodiment of the present invention is a method of creating a battery material comprising the steps of high energy ball milling particles to create complex particles, and sintering said complex particles to create a nanocomposite. The high energy ball milling may dope and composite the particles to create the complex particles.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 14, 2013
    Applicant: AEGIS TECHNOLOGY, INC
    Inventors: Zhigang Lin, Chunhu Tan
  • Publication number: 20130063184
    Abstract: Versions of the present invention have many advantages, including operation under high temperatures, or high frequencies while providing the required current for switching a SiC VJFET, providing electrical isolation and minimizing dv/dt noise. One embodiment is a silicon carbide gate driver comprising a first group of silicon on insulator devices and passive components and a second group of silicon carbide devices. The first group may have equivalent temperatures of operation and equivalent frequencies of operation as the second group.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 14, 2013
    Applicant: AEGIS TECHNOLOGY, INC
    Inventors: Xiaoning Liang, Chunhu Tan, Zhigang Lin