Patents by Inventor Chunlan Jiang

Chunlan Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883672
    Abstract: Methods, systems, and devices that are used for improving cardiac resynchronization therapy (CRT) are described herein. Such a method can include, for each set of pacing parameters, of a plurality of sets of pacing parameters, performing CRT using a set of pacing parameters and simultaneously therewith sensing a plurality of intracardiac electrograms (IEGMs) using different combinations of implanted electrodes. Additionally, for each set of pacing parameters, of the plurality of sets of pacing parameters, the method includes producing a respective reconstructed multi-lead surface electrocardiogram (ECG) based on the plurality of IEGMs that were sensed while CRT was performed using the set of pacing parameters. The method also includes analyzing the reconstructed multi-lead surface ECGs that were produced for the plurality of sets of pacing parameters, and based on results thereof, identifying a set of pacing parameters to be use for further CRT.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Donald L. Hopper, Luke C. McSpadden, Louis-Philippe Richer, Jan Mangual, Nima Badie, Chunlan Jiang
  • Publication number: 20230233868
    Abstract: Methods and systems for terminating a pacemaker mediated tachycardia (PMT) are described herein. During a period that a PMT is not detected, an implantable system delivers an atrial pacing pulse to an atrial cardiac chamber in response to a PA interval expiring without an intrinsic atrial event being detected during the PA interval. The systems performs atrial sensing to thereby monitor for intrinsic atrial events in the atrial cardiac chamber, performs ventricular sensing to thereby monitor for intrinsic ventricular events in a ventricular cardiac chamber, and detects the PMT. Additionally, the system, in response to the PMT being detected, initiates a PMT PA interval that is shorter than the PA interval that the system would otherwise use for atrial pacing if the PMT was not detected.
    Type: Application
    Filed: April 4, 2023
    Publication date: July 27, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Matthew G. Fishler
  • Patent number: 11648407
    Abstract: An implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), and methods for use therewith, are configured or used to terminate a pacemaker mediated tachycardia (PMT). In an embodiment, in response to the aLP detecting a PMT, the aLP initiates a PMT PA interval, and the aLP does not inform the vLP, via an i2i communication, of an atrial sensed event that caused the PMT to be detected, thereby preventing the vLP from initiating a PV interval during the PMT PA interval. The aLP selectively terminates the PMT PA interval. Additionally, the aLP informs the vLP, via an i2i communication, of an intrinsic atrial event being detected during the PMT PA interval, or of an atrial paced event being performed in response to the PMT PA interval expiring without an intrinsic atrial event being detected during the PMT PA interval.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: May 16, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Matthew G. Fishler
  • Patent number: 11564606
    Abstract: The signal quality of an electrophysiological signal can be determined from information regarding proximal stability of an electrophysiology catheter at the time the signal is acquired and temporal stability of the electrophysiological signal. The proximal stability information can include a distance between the electrophysiology catheter and an anatomical surface, a velocity of the electrophysiology catheter, and/or contact force between the electrophysiology catheter and the anatomical surface. Graphical representations of signal quality scores can be output to a display in order to enable visualization thereof by a practitioner.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 31, 2023
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jan O. Mangual-Soto, Louis-Philippe Richer, Chunlan Jiang, Cyrille Casset, Craig Markovitz
  • Patent number: 11564614
    Abstract: Systems and methods for identifying potential ablation sites using electrical parameter data are provided. A method includes geometrically isolating an arrhythmogenic substrate in a three-dimensional geometry. The method further includes generating a first cumulative map from a first dataset including electrical parameter data for each vertex in the isolated arrhythmogenic substrate, and generating a second cumulative map from a second dataset including additional data for each vertex. The method further includes generating a third cumulative map from the first and second cumulative maps, and displaying the third cumulative map on the three-dimensional geometry to facilitate identifying potential ablation sites.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: January 31, 2023
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Louis-Philippe Richer, Chunlan Jiang, Craig Markovitz, Jan Mangual, Cyrille Casset
  • Patent number: 11559240
    Abstract: The present disclosure is directed to merging data acquired from differently configured catheters on a common map. In use, physical characteristics of catheters influence recorded electrical signals/responses such that differently configured catheters (e.g., different electrode sizes, shapes, materials, spacings, etc.) may record different responses to measurements taken at the same location in response to the same excitation signal. To allow merging of data from differently configured catheters in a common map, the present disclosure applies a corrective coefficient or transfer function to the recorded electrical signals of one or both catheters to counter-balance variable influences of catheter specific characteristics on recorded signals.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: January 24, 2023
    Assignee: ST JUDE MEDICAL CARDIOLOGY DIVISION, INC
    Inventors: Cyrille Casset, Jan Mangual, Chunlan Jiang, Craig Markovitz, Louis-Philippe Richer
  • Publication number: 20220401744
    Abstract: For use by an implantable system including a first and second leadless pacemakers (LPs) implanted, respectively, in first and second cardiac chambers, a method comprises storing, within memory of the first LP, a paced activation morphology template corresponding to far-field signal components expected to be present in an EGM sensed by the first LP when a pacing pulse delivered to the second cardiac chamber by the second LP captures the second cardiac chamber. The method also includes the first LP comparing a morphology of a portion of an EGM sensed by the first LP to the paced activation morphology template to determine whether a match therebetween is detected, and determining whether capture of the second cardiac chamber occurred or failed to occur, based on whether the first LP detects a match between the morphology of the portion of the EGM and the paced activation morphology template.
    Type: Application
    Filed: August 26, 2022
    Publication date: December 22, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Gene A. Bornzin
  • Publication number: 20220361795
    Abstract: An implantable medical device includes a header configured to be mounted to an end of a device housing that contains an electronics module therein. The header includes an antenna, a sensing electrode, and a header body that at least partially surrounds the antenna and the sensing electrode. The sensing electrode includes a first body portion, a second body portion, and a bridge portion that mechanically and electrically connects the first and second body portions. The first body portion is at least partially exposed to an external environment along a first side of the header, and the second body portion is at least partially exposed to the external environment along a second side of the header that is different from the first side.
    Type: Application
    Filed: April 19, 2022
    Publication date: November 17, 2022
    Inventors: Alex Robertson, Arees Garabed, Leyla Sabet, Chunlan Jiang, Eric Somogyi
  • Patent number: 11464984
    Abstract: Systems, devices, and methods for monitoring for atrial capture are disclosed. Such a method, for use within an implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), includes storing within a memory of the vLP a paced atrial activation morphology template corresponding to far-field atrial signal components expected to be present in a vEGM sensed by the vLP when an atrial pacing pulse delivered by the aLP captures atrial tissue. The vLP senses a vEGM and compares a morphology of a portion of the sensed vEGM to the paced atrial activation morphology template to determine whether a match therebetween is detected. Additionally, the vLP determines whether atrial capture occurred or failed to occur (responsive to an atrial pacing pulse), based on whether the vLP detects a match between the morphology of a portion of the sensed vEGM and the paced atrial activation morphology template.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: October 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Gene A. Bornzin
  • Patent number: 11419537
    Abstract: Systems and methods for resolving catheter rendering issues are provided. A system includes a catheter including a plurality of electrodes and a plurality of catheter pins, each catheter pin corresponding to an associated electrode. The system further includes a mapping system communicatively coupled to the catheter, the mapping system including a pin box including a plurality of sockets, a display device configured to render the catheter, and an electronic control unit (ECU). The ECU is configured to determine that the catheter is being rendered incorrectly on the display device, determine a number of electrodes that are being rendered incorrectly on the display device, identify at least one particular electrode of the plurality of electrodes that is being rendered incorrectly on the display device, and attempt to resolve the incorrect rendering of the catheter based on the determined number of electrodes and the at least one particular electrode.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 23, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Craig Markovitz, Louis-Philippe Richer, Chunlan Jiang, Cyrille Casset, Jan O. Mangual-Soto, Luke McSpadden
  • Publication number: 20220167899
    Abstract: A method of generating a map of a portion of a patient's anatomy using an electroanatomical mapping system includes separating an anatomical region (e.g., the heart) into an inclusion region (e.g., the left atrium) and an exclusion region (e.g., the left ventricle) by defining a boundary surface (e.g., along the mitral valve). A label electrode carried by a multi-electrode catheter can be defined and used to determine whether or not to add an electrophysiology data point collected using the multi-electrode catheter to the map. In particular, electrophysiology data points can be added to the map of the portion of the patient's anatomy when they are collected with the label electrode within the inclusion region. Positions of the label electrode can also be used to define the boundary surface. Alerts can also be provided when the label electrode crosses the boundary surface and enters the exclusion region.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 2, 2022
    Inventors: Craig Markovitz, Jan O. Mangual-Soto, Chunlan Jiang, Louis-Philippe Richer, Cyrille Casset
  • Patent number: 11344236
    Abstract: A method of generating an electrophysiology map of a portion of a patient's anatomy using an electroanatomical mapping system, includes defining a plurality of inclusion criteria, collecting a plurality of electrophysiology data points, each being associated with inclusion data, and identifying those electrophysiology data points that have inclusion data satisfying the inclusion criteria. The inclusion criteria can then be automatically adjusted to drive the number of electrophysiology data points having inclusion data satisfying the inclusion criteria towards a target number. A graphical representation of the electrophysiology map can be rendered using the final set of electrophysiology data points.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 31, 2022
    Assignee: ST JUDE MEDICAL CARDIOLOGY DIVISION, INC.
    Inventors: Craig Markovitz, Louis-Philippe Richer, Chunlan Jiang, Cyrille Casset
  • Patent number: 11331498
    Abstract: Computer implemented methods and systems are provided for automatically determining capture thresholds for an implantable medical device equipped for cardiac stimulus pacing using a multi-pole left ventricular (LV) lead. The methods and systems measures a base capture threshold for a base pacing vector utilizing stimulation pulses varied over at least a portion of an outer test range. The base pacing vector is defined by a first LV electrode provided on the LV lead and a second electrode located remote from an LV chamber. The methods and systems designate a secondary pacing vector that includes the first LV electrode and a neighbor LV electrode provided on the LV lead. The methods and systems further define an inner test range having secondary limits based on the base capture threshold, wherein at least one of the limits for the inner test range differs from a corresponding limit for the outer test range.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 17, 2022
    Assignee: PACESETTER, INC.
    Inventors: Luke McSpadden, Fujian Qu, Cyrille S. Casset, Chunlan Jiang, Kyungmoo Ryu, Caroline D. Jordan, Yelena Nabutovsky, Nima Badie
  • Patent number: 11291400
    Abstract: A computer implemented method and system to detect P-waves in cardiac activity is provided. The system includes memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining far field cardiac activity (CA) signals for a series of beats, applying a P-wave template to at least one sub-segment of the CA signals to obtain an alignment indicator and calculating an amplitude dependence (AD) indicator based at least in part on the P-wave template and the at least one sub-segment. The system analyzes the alignment indicator based on a first criteria, compares the AD indicator with a second criteria, designates a candidate P-wave to be an actual P-wave based on the analyzing and comparing and records results of the designating.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: April 5, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Chunlan Jiang, Jong Gill, Xiaoyi Min, Kyungmoo Ryu, Gabriel A. Mouchawar
  • Publication number: 20220020228
    Abstract: Systems and methods for modifying a geometry surface model using electrophysiology (EP) measurements are provided. A system includes a device including at least one sensor configured to collect a set of location data points, and collect EP data at a measurement point. The system further includes a computer-based model construction system coupled to the device and configured to generate an original surface based on the set of location data points, the original surface including a plurality of corner points and a plurality of surface segments extending between the plurality of corner points, modify the original surface, based on the measurement point, to generate a modified surface, and map the EP data for the measurement point to the modified surface.
    Type: Application
    Filed: February 20, 2020
    Publication date: January 20, 2022
    Inventors: Cyrille Casset, Jan O. Mangual-Soto, Louis-Philippe Richer, Chunlan Jiang, Craig Markovitz
  • Patent number: 11219774
    Abstract: A computer implemented method and device for providing dual chamber sensing with a single chamber leadless implantable medical device (LIMD) are provided. The method is under control of one or more processors in the LIMD configured with specific executable instructions. The method obtains a far field (FF) cardiac activity (CA) signals for activity in a remote chamber of a heart and compares the far field CA signals to a P-wave template to identify an event of interest associated with the remote chamber. The method sets an atrial-ventricular (AV) delay based on the P-wave identified and delivers pacing pulses at a pacing site of interest to a local chamber based on the AV delay.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Nima Badie, Chunlan Jiang, David Ligon
  • Publication number: 20210401492
    Abstract: Disclosed herein is a system for assessing ablation lesions. The system includes an ablation catheter configured to ablate a target cardiac tissue site to form an ablation lesion thereon, and a mechanical probe operable to impart mechanical force to the target cardiac tissue site. The mechanical probe includes at least one sensor configured to measure a mechanical response of the target cardiac tissue site to the mechanical force. The system further includes a controller communicatively coupled to the mechanical probe, and configured to determine systolic and diastolic stiffness values of the target cardiac tissue site based on the mechanical response. The controller is further configured to determine a transmurality value of the ablation lesion based on the determined systolic and diastolic stiffness values.
    Type: Application
    Filed: February 10, 2020
    Publication date: December 30, 2021
    Inventors: Jan O. MANGUAL-SOTO, Louis-Philippe RICHER, Chunlan JIANG, Cyrille CASSET, Craig MARKOVITZ
  • Publication number: 20210345900
    Abstract: A computer implemented method and system to detect P-waves in cardiac activity is provided. The system includes memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining far field cardiac activity (CA) signals for a series of beats, applying a P-wave template to at least one sub-segment of the CA signals to obtain an alignment indicator and calculating an amplitude dependence (AD) indicator based at least in part on the P-wave template and the at least one sub-segment. The system analyzes the alignment indicator based on a first criteria, compares the AD indicator with a second criteria, designates a candidate P-wave to be an actual P-wave based on the analyzing and comparing and records results of the designating.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 11, 2021
    Inventors: Gene A. Bornzin, Chunlan Jiang, Jong Gill, Xiaoyi Min, Kyungmoo Ryu, Gabriel A. Mouchawar
  • Publication number: 20210259769
    Abstract: Systems and methods for optical balloon catheters are provided. A catheter includes a distal section including an optically transparent balloon, a first optical array positioned within the balloon, wherein the first optical array is configured to at least one of ablate tissue and sense at least one tissue property, and a second optical array positioned outside the balloon, wherein the second optical array is configured to at least one of ablate tissue and sense at least one tissue property.
    Type: Application
    Filed: August 14, 2019
    Publication date: August 26, 2021
    Inventors: Chunlan JIANG, Louis-Philippe Richer
  • Publication number: 20210260380
    Abstract: Methods, systems, and devices that are used for improving cardiac resynchronization therapy (CRT) are described herein. Such a method can include, for each set of pacing parameters, of a plurality of sets of pacing parameters, performing CRT using a set of pacing parameters and simultaneously therewith sensing a plurality of intracardiac electrograms (IEGMs) using different combinations of implanted electrodes. Additionally, for each set of pacing parameters, of the plurality of sets of pacing parameters, the method includes producing a respective reconstructed multi-lead surface electrocardiogram (ECG) based on the plurality of IEGMs that were sensed while CRT was performed using the set of pacing parameters. The method also includes analyzing the reconstructed multi-lead surface ECGs that were produced for the plurality of sets of pacing parameters, and based on results thereof, identifying a set of pacing parameters to be use for further CRT.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 26, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Donald L. Hopper, Luke C. McSpadden, Louis-Philippe Richer, Jan Mangual, Nima Badie, Chunlan Jiang