Patents by Inventor Chunming Xu

Chunming Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9925532
    Abstract: There is provided a process of treating a heavy hydrocarbon-comprising material, comprising: contacting a feed material with at least a catalyst material within a contacting zone to effect generation of a total product such that a contacting zone material is disposed within the contacting zone and consists of the catalyst material and a feed/product-comprising mixture comprising the feed material and the total product, wherein the feed/product-comprising mixture includes a Conradson carbon residue content of at least 12 weight percent, based on the total weight of the feed/product-comprising mixture, and also includes an asphaltene content of less than two (2) weight percent, based on the total weight of the feed/product-comprising mixture, and wherein the feed material includes deasphalted heavy hydrocarbon-comprising material.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: March 27, 2018
    Assignee: WELL RESOURCES INC.
    Inventors: Suoqi Zhao, Qiang Wei, Chunming Xu, Zhiming Xu, Xuewen Sun, Keng H. Chung
  • Publication number: 20170320047
    Abstract: The present invention provides a process to prepare a composite ionic liquid, the process at least comprising the steps: (a) mixing an ammonium salt and a solid aluminium salt to obtain a first mixture; (b) stirring under heating the first mixture of step (a); (c) adding to the first mixture of step (b) one or more solid metal salts to obtain a second mixture, wherein the metal salts are selected from halides, sulfates, or nitrates of aluminium, gallium, copper, iron, zinc, nickel, cobalt, molybdenum and platinum; (d) stirring under heating the second mixture of step (c); (e) adding to the second mixture of step (d) a hydrocarbon to obtain a third mixture; (f) stirring under heating the third mixture of step (e) until the solids of the aluminium salt of step (a), and the solids of the metal salts of step (c) disappear and the mixture is converted into a composite ionic liquid; and (g) cooling the composite ionic liquid of step (f).
    Type: Application
    Filed: October 22, 2015
    Publication date: November 9, 2017
    Inventors: Rui ZHANG, Zhichang LIU, Xianghai MENG, Chunming XU
  • Patent number: 9725658
    Abstract: The present invention provides a method for processing low-grade heavy oil, comprising: providing a riser-bed reactor; preheating the low-grade heavy oil and injecting it into the riser reactor to react with solid catalyst particles at the temperature of 550-610° C.; oil-gas, after reacting with the solid catalyst particles in the riser reactor, being introduced into the fluidized bed reactor to continue to react at temperature of 440-520° C. and weight hourly space velocity of 0.5-5 h?1; and the oil-gas, after reacting in the fluidized bed reactor, being separated from coked solid catalyst particles carried therein, and the separated oil-gas being introduced into a fractionation system. The method can effectively remove carbon residues, heavy metals, asphaltenes and other impurities from the low-grade heavy oil, and obtain high liquid product yield in a simple process.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: August 8, 2017
    Assignees: CHINA UNIVERSITY OF PETROLEUM-BEIJING, CHINA NATIONAL PETROLEUM CORPORATION
    Inventors: Gang Wang, Jinsen Gao, Chunming Xu, Baojian Shen, Hongliang Wang
  • Patent number: 9683183
    Abstract: The present invention provides a method for deep desulfurization of gasoline. The method includes steps of: cutting a gasoline feedstock into light, medium, and heavy gasoline fractions; the medium gasoline fraction being subjected to adsorption desulfurization to obtain a desulfurized medium gasoline fraction; the heavy gasoline fraction being subjected to selective hydrodesulfurization to obtain a desulfurized heavy gasoline fraction; mixing the light gasoline fraction with the desulfurized medium gasoline fraction and the desulfurized heavy gasoline fraction to obtain a desulfurized gasoline, where, a cutting temperature of the light and the medium gasoline fractions is 35-60° C., a cutting temperature of the medium and the heavy gasoline fractions is 70-130° C. The method according to the present invention not only can realize deep desulfurization of gasoline, but also has a less loss of octane number.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 20, 2017
    Assignee: CHINA UNIVERSITY OF PETROLEUM—BEIJING
    Inventors: Liang Zhao, Jinsen Gao, Chunming Xu, Tianzhen Hao, Xiaona Han
  • Patent number: 9663730
    Abstract: The present invention provides a method for the conversion of asphaltenes to light fractions, including: a process of reacting a hydrogen donor solvent with an asphaltene-containing feedstock, and fractionating reaction products, where a weight ratio of the hydrogen donor solvent to the asphaltene-containing feedstock is 0.1-5:1, a weight hourly space velocity of the reaction is 0.2-5 h?1, reaction pressure is 0.5-25 MPa, reaction temperature is 360-500° C., and the hydrogen donor solvent is a solvent containing polycyclic aromatic compound having ?-hydrogen. The method according to the present invention can effectively achieve light fraction conversion of the asphaltenes to light fractions, and the process operation is simple.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: May 30, 2017
    Assignee: CHINA UNIVERSITY OF PETROLEUM—BEIJING
    Inventors: Gang Wang, Jinsen Gao, Chunming Xu, Nan Jin
  • Patent number: 9567273
    Abstract: The present invention relates to a process for preparing alkylate comprising the subsequent steps (a), (b) and (c): (a) an alkylation step, wherein in a reaction zone a hydrocarbon mixture comprising at least an isoparaffin and an olefin is reacted with an ionic liquid catalyst to obtain an effluent comprising alkylate and solids, which latter are formed as side products in the alkylation step; (b) a separation step, wherein at least part of the alkylate-comprising effluent coming from the reaction zone is separated in a separator unit into a hydrocarbon-rich phase and an ionic liquid catalyst-rich phase which latter phase also comprises solids formed as side products during the alkylation reaction; and (c) a solids removal step, wherein the solids in ionic liquid catalyst-rich phase are separated from the ionic liquid catalyst using a suitable separating device; wherein the process further comprises a step following the separation step (b) and prior to the solids removal step (c).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: February 14, 2017
    Assignee: SHELL OIL COMPANY
    Inventors: Peter Anton August Klusener, Zhichang Liu, Xianghai Meng, Rui Zhang, Jan De With, Chunming Xu
  • Publication number: 20160348012
    Abstract: There is provided a process of treating a heavy hydrocarbon-comprising material, comprising: contacting a feed material with at least a catalyst material within a contacting zone to effect generation of a total product such that a contacting zone material is disposed within the contacting zone and consists of the catalyst material and a feed/product-comprising mixture comprising the feed material and the total product, wherein the feed/product-comprising mixture includes a Conradson carbon residue content of at least 12 weight percent, based on the total weight of the feed/product-comprising mixture, and also includes an asphaltene content of less than two (2) weight percent, based on the total weight of the feed/product-comprising mixture, and wherein the feed material includes deasphalted heavy hydrocarbon-comprising material.
    Type: Application
    Filed: February 26, 2016
    Publication date: December 1, 2016
    Inventors: SUOQI ZHAO, QIANG WEI, CHUNMING XU, ZHIMING XU, XUEWEN SUN, KENG H. CHUNG
  • Publication number: 20160222302
    Abstract: The present invention provides an adsorbent and a method for desulfurization of gasoline. The adsorbent is obtained by loading active metal component on a composite carrier comprising zeolite and active carbon subjected to alkali treatment respectively, the active metal is selected from one or more elements of IA, IIA, VIII, IB, IIB and VIB groups in the periodic table. This method uses the adsorbent to conduct gasoline adsorption desulfurization, which especially cuts the gasoline into a light and a heavy gasoline fraction firstly, then the light fraction is subjected to adsorption desulfurization using the adsorbent, and the heavy fraction is subjected to selective hydrodesulfurization, a cutting temperature of the light and the heavy gasoline fraction is 70-110° C. The adsorbent has a large sulfur adsorption, a long service life, and simply to be regenerated; the method can realize deep desulfurization of gasoline, and has a less octane number loss.
    Type: Application
    Filed: November 3, 2015
    Publication date: August 4, 2016
    Inventors: LIANG ZHAO, Jinsen Gao, Chunming Xu, Tianzhen Hao, Xiaona Han
  • Publication number: 20160222303
    Abstract: A method for upgrading fluid catalytic cracking gasoline includes the following steps: cutting fluid catalytic cracking gasoline into light, medium, and heavy gasoline fractions; subjecting the medium gasoline fraction to an aromatization/hydroisomerization reaction in the presence of a catalyst to obtain a desulfurized medium gasoline fraction; and blending the light gasoline fraction, the desulfurized medium gasoline fraction and the heavy gasoline fraction to obtain upgraded gasoline; where, a cutting temperature of the light and the medium gasoline fractions is 35-60° C., and a cutting temperature of the medium and the heavy gasoline fractions is 70-160° C. The method according to the present invention not only can realize deep desulfurization of fluid catalytic cracking gasoline, but also can improve octane number significantly.
    Type: Application
    Filed: November 12, 2015
    Publication date: August 4, 2016
    Inventors: JINSEN GAO, LIANG ZHAO, CHUNMING XU, TIANZHEN HAO, XIAONA HAN
  • Publication number: 20160222304
    Abstract: The present invention provides a method for deep desulfurization of gasoline. The method includes steps of: cutting a gasoline feedstock into light, medium, and heavy gasoline fractions; the medium gasoline fraction being subjected to adsorption desulfurization to obtain a desulfurized medium gasoline fraction; the heavy gasoline fraction being subjected to selective hydrodesulfurization to obtain a desulfurized heavy gasoline fraction; mixing the light gasoline fraction with the desulfurized medium gasoline fraction and the desulfurized heavy gasoline fraction to obtain a desulfurized gasoline, where, a cutting temperature of the light and the medium gasoline fractions is 35-60° C., a cutting temperature of the medium and the heavy gasoline fractions is 70-130° C. The method according to the present invention not only can realize deep desulfurization of gasoline, but also has a less loss of octane number.
    Type: Application
    Filed: October 30, 2015
    Publication date: August 4, 2016
    Inventors: LIANG ZHAO, JINSEN GAO, CHUNMING XU, TIANZHEN HAO, XIAONA HAN
  • Patent number: 9346042
    Abstract: The present invention relates to a regeneration process for producing a regenerated ionic liquid catalyst from solids formed in an ionic liquid alkylation process wherein a first ionic liquid is used as a catalyst which is a composite ionic liquid comprising ammonium cations, and anions being composite coordinate anions derived from two or more metal salts, the regeneration process comprising (a) removing the solids from the reaction zone of the alkylation process; and (b) subsequently treating the solids with a second ionic liquid made from an ammonium salt as cation, and an aluminum salt as anion which is the same as the aluminum salt present in the first ionic liquid.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 24, 2016
    Assignee: Shell Oil Company
    Inventors: Rui Zhang, Zhichang Liu, Chunming Xu, Xianghai Meng, Peter Anton August Klusener
  • Patent number: 9290706
    Abstract: The invention provides an integrated process for processing heavy oil, wherein the integrated process at least comprises: solvent deasphalting is carried out for heavy oil material, and de-oiled asphalt phase is mixed with dispersing agent and then entered a thermal cracking reactor to undergo thermal cracking reactions. Upgraded oil can be obtained through the mixture of the de-asphalted oil and thermal cracking oil separated from thermal cracking reaction products. The solvent and heavy gas oil, which are separated from the thermal cracking reaction products, are respectively recycled back to the solvent deasphalting process as solvent and as mixed feed to remove asphaltene. The integrated process of the present invention solves the problems that solvent is difficult to be separated from asphalt with high softening point in solvent deasphalting process and hard asphalt is difficult to be transported.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 22, 2016
    Assignee: CHINA UNIVERSITY OF PETROLEUM-BEIJING
    Inventors: Suoqi Zhao, Xuewen Sun, Zhiming Xu, Chunming Xu, Keng H. Chung
  • Publication number: 20160053189
    Abstract: The present invention provides a method for the conversion of asphaltenes to light fractions, including: a process of reacting a hydrogen donor solvent with an asphaltene-containing feedstock, and fractionating reaction products, where a weight ratio of the hydrogen donor solvent to the asphaltene-containing feedstock is 0.1-5:1, a weight hourly space velocity of the reaction is 0.2-5 h?1, reaction pressure is 0.5-25 MPa, reaction temperature is 360-500° C., and the hydrogen donor solvent is a solvent containing polycyclic aromatic compound having ?-hydrogen. The method according to the present invention can effectively achieve light fraction conversion of the asphaltenes to light fractions, and the process operation is simple.
    Type: Application
    Filed: January 27, 2015
    Publication date: February 25, 2016
    Inventors: GANG WANG, JINSEN GAO, CHUNMING XU, NAN JIN
  • Patent number: 9260668
    Abstract: The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; —a catalyst phase recycle means to recycle at least part of the catalyst phase from the separator unit to the reactor unit; which method includes: —adapting the catalyst phase recycle means by providing a means for acid injection and/or a means for halohydrocarbon injection into the catalyst recycle means. The invention further provides a method for the production of alkylate.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 16, 2016
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Publication number: 20150315103
    Abstract: The present invention relates to a process for preparing alkylate comprising the subsequent steps (a), (b) and (c): (a) an alkylation step, wherein in a reaction zone a hydrocarbon mixture comprising at least an isoparaffin and an olefin is reacted with an ionic liquid catalyst to obtain an effluent comprising alkylate and solids, which latter are formed as side products in the alkylation step; (b) a separation step, wherein at least part of the alkylate-comprising effluent coming from the reaction zone is separated in a separator unit into a hydrocarbon-rich phase and an ionic liquid catalyst-rich phase which latter phase also comprises solids formed as side products during the alkylation reaction; and (c) a solids removal step, wherein the solids in ionic liquid catalyst-rich phase are separated from the ionic liquid catalyst using a suitable separating device; wherein the process further comprises a step following the separation step (b) and prior to the solids removal step (c).
    Type: Application
    Filed: December 13, 2013
    Publication date: November 5, 2015
    Inventors: Peter Anton August KLUSENER, Zhichang LIU, Xianghai MENG, Rui Zhang, Jan DE WITH, Chunming XU
  • Publication number: 20150231624
    Abstract: The present invention relates to a regeneration process for producing a regenerated ionic liquid catalyst from solids formed in an ionic liquid alkylation process wherein a first ionic liquid is used as a catalyst which is a composite ionic liquid comprising ammonium cations, and anions being composite coordinate anions derived from two or more metal salts, wherein at least one metal salt is an aluminium salt and any further metal salt is a salt of a metal selected from the group consisting of Group IB elements of the Periodic Table, Group IIB elements of the Periodic Table and transition elements of the Periodic Table, the regeneration process comprising (a) removing the solids from the reaction zone of the alkylation process; and (b) subsequently treating the solids with a second ionic liquid made from an ammonium salt as cation, and an aluminium salt as anion which is the same as the aluminium salt present in the first ionic liquid.
    Type: Application
    Filed: December 28, 2012
    Publication date: August 20, 2015
    Inventors: Rui Zhang, Zhichang Liu, Chunming Xu, Xianghai Meng, Peter Anton August Klusener
  • Patent number: 9096487
    Abstract: Disclosed is an alkylation process using ionic liquid as catalyst, which process comprises separating halogenated hydrocarbons-rich fraction from the alkylation product by distillation and/or adsorption and reintroducing the separated fraction into the reaction system during the alkylation reaction, wherein the ionic liquid catalyst used in the alkylation reaction has a cation derived from hydrohalide of alkyl amine, hydrohalide of imidazole or hydrohalide of pyridine and an anion derived from one or more metallic compounds. The inventive process effectively utilizes the halogenated hydrocarbons in the alkylation product, prolongs the life of the ionic liquid catalyst, and reduces the halogen content in the alkylate oil.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: August 4, 2015
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng
  • Publication number: 20150090637
    Abstract: The present invention provides a method for processing low-grade heavy oil, comprising: providing a riser-bed reactor; preheating the low-grade heavy oil and injecting it into the riser reactor to react with solid catalyst particles at the temperature of 550-610° C.; oil-gas, after reacting with the solid catalyst particles in the riser reactor, being introduced into the fluidized bed reactor to continue to react at temperature of 440-520° C. and weight hourly space velocity of 0.5-5 h?1; and the oil-gas, after reacting in the fluidized bed reactor, being separated from coked solid catalyst particles carried therein, and the separated oil-gas being introduced into a fractionation system. The method can effectively remove carbon residues, heavy metals, asphaltenes and other impurities from the low-grade heavy oil, and obtain high liquid product yield in a simple process.
    Type: Application
    Filed: June 4, 2014
    Publication date: April 2, 2015
    Inventors: GANG WANG, JINSEN GAO, CHUNMING XU, BAOJIAN SHEN, HONGLIANG WANG
  • Patent number: 8692048
    Abstract: The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; and which method includes: —providing a second separator unit suitable for the separation of solids from liquids downstream of the reactor unit suitable to reduce the solids content in at least part of the reactor effluent.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 8, 2014
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8653318
    Abstract: The present invention provides process for preparing an alkylate comprising contacting in a reactor a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate, which process further comprises: —withdrawing an alkylate-comprising reactor effluent from the reactor, wherein the reactor effluent comprises an ionic liquid phase and a hydrocarbon phase; —separating at least part the reactor effluent into a hydrocarbon phase effluent and a multiple-phase effluent in a centrifugal separation unit; —fractionating at least part of said hydrocarbon phase effluent into at least a stream comprising alkylate and a stream comprising isoparaffin.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 18, 2014
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch