Patents by Inventor Chunxi Zhang

Chunxi Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11598915
    Abstract: An anti-torsion solid-core polarization-maintaining photonic crystal fiber includes a cladding having an inner layer arranged around the core and an outer layer between the inner layer and the outer wall of the cladding. The inner layer has multi-layer air holes used to construct optical properties and two micron-size air holes arranged along the x-axis extending in the center producing form birefringence. The outer layer includes multi-layer air holes arranged radially along the y-axis. The size and arrangement of the multi-layer air holes in the outer layer cause the bending stiffness of the photonic crystal fiber along the x-axis to be different from that along the y-axis. While meeting the requirements of the optical properties of the fiber, the photonic crystal fiber possesses an anti-torsion ability due to the anisotropy of stress distribution in the radial direction, thereby reducing the non-reciprocal phase difference generated by the magneto-optic Faraday Effect.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: March 7, 2023
    Assignee: BEIHANG UNIVERSITY
    Inventors: Chunxi Zhang, Jingming Song, Ningfang Song, Zhiyu Guo, Zuchen Zhang, Yan Li
  • Patent number: 11511266
    Abstract: [Mn3SrO4] cluster compounds are synthesized in a single step from raw materials consisting of simple and inexpensive Mn2+, Sr2+ inorganic compounds and carboxylic acids by using permanganate anion as oxidant. This step can be followed by the synthesis of asymmetric biomimetic water splitting catalyst [Mn4SrO4] cluster compounds in the presence of water. The [Mn4SrO4] cluster compound can catalyze the splitting of water in the presence of an oxidant to release oxygen gas. The neutral [Mn3SrO4](R1CO2)6(R1CO2H)3 cluster compound can serve as precursors for the synthesis of biomimetic water splitting catalysts, and can be utilized in the synthesis of different types of biomimetic water splitting catalysts. [Mn4SrO4](R1CO2)8(L1)(L2)(L3)(L4) cluster compounds can serve as artificial water splitting catalysts, can be utilized on the surface of an electrode or in the catalyzed splitting of water driven by an anoxidant.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: November 29, 2022
    Assignee: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Chunxi Zhang, Changhui Chen
  • Publication number: 20220057569
    Abstract: An anti-torsion solid-core polarization-maintaining photonic crystal fiber includes a cladding having an inner layer arranged around the core and an outer layer between the inner layer and the outer wall of the cladding. The inner layer has multi-layer air holes used to construct optical properties and two micron-size air holes arranged along the x-axis extending in the center producing form birefringence. The outer layer includes multi-layer air holes arranged radially along the y-axis. The size and arrangement of the multi-layer air holes in the outer layer cause the bending stiffness of the photonic crystal fiber along the x-axis to be different from that along the y-axis. While meeting the requirements of the optical properties of the fiber, the photonic crystal fiber possesses an anti-torsion ability due to the anisotropy of stress distribution in the radial direction, thereby reducing the non-reciprocal phase difference generated by the magneto-optic Faraday Effect.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 24, 2022
    Inventors: Chunxi Zhang, Jingming Song, Ningfang Song, Zhiyu Guo, Zuchen Zhang, Yan Li
  • Publication number: 20200290031
    Abstract: [Mn3SrO4] cluster compounds are synthesized in a single step from raw materials consisting of simple and inexpensive Mn2+, Sr2+ inorganic compounds and carboxylic acids by using permanganate anion as oxidant. This step can be followed by the synthesis of asymmetric biomimetic water splitting catalyst [Mn4SrO4] cluster compounds in the presence of water. The [Mn4SrO4] cluster compound can catalyze the splitting of water in the presence of an oxidant to release oxygen gas. The neutral [Mn3SrO4](R1CO2)6(R1CO2H)3 cluster compound can serve as precursors for the synthesis of biomimetic water splitting catalysts, and can be utilized in the synthesis of different types of biomimetic water splitting catalysts. [Mn4SrO4](R1CO2)8(L1)(L2)(L3)(L4) cluster compounds can serve as artificial water splitting catalysts, can be utilized on the surface of an electrode or in the catalyzed splitting of water driven by an anoxidant.
    Type: Application
    Filed: November 1, 2017
    Publication date: September 17, 2020
    Inventors: Chunxi ZHANG, Changhui CHEN
  • Patent number: 10421065
    Abstract: The present invention provides a process for preparing a water splitting catalyst containing [Mn4CaO4] core structure and use thereof. The present invention provides clusters containing [Mn4CaO4] core structure by a chemical synthesis using inexpensive metal ions (Mn2+, Ca2+ ions), simple carboxyl ligands and a permanganate, performed single crystal X-ray diffraction on their space structure, and characterized their physical and chemical properties with electron spectrum, electrochemical and electron paramagnetic resonance technologies and the like. These compounds can catalyze water splitting in the presence of oxidant to release oxygen and can also catalyze water splitting on the surface of an electrode to release electrons onto the surface of the electrode to form a current.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: September 24, 2019
    Assignee: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Chunxi Zhang, Changhui Chen
  • Patent number: 9915779
    Abstract: The low magnetic sensitivity PM-PCF based on mechanical buffer is obtained by adding buffer structures in the cladding layer of the photonic crystal fiber. In the center of the fiber, the core region contains at least 3 layers of air-holes, enclosed by the cladding layer. The buffer structures are placed in the cladding layer. These buffer structures are formed by replacing silica of any shape by air, and are symmetrically located in X-axis and Y-axis directions to achieve mechanical isotropy. The buffer structures improve the fiber's performance in fiber coiling and stress conditions. Therefore, the fiber optic gyroscope using the PM-PCF can do without a magnetic shield, thus greatly reducing the weight of the fiber optic gyroscope and extending the scope of its application. Compared with the conventional commercial PCF, the PM-PCF provides the fiber optic gyroscope with lower temperature sensitivity and improved accuracy.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: March 13, 2018
    Assignee: BEIHANG UNIVERSITY
    Inventors: Jingming Song, Chunxi Zhang, Weile Li, Wei Cai, Jing Jin, Ningfang Song
  • Publication number: 20180008969
    Abstract: The present invention provides a process for preparing a water splitting catalyst containing [Mn4CaO4] core structure and use thereof. The present invention provides clusters containing [Mn4CaO4] core structure by a chemical synthesis using inexpensive metal ions (Mn2+, Ca2+ ions), simple carboxyl ligands and a permanganate, performed single crystal X-ray diffraction on their space structure, and characterized their physical and chemical properties with electron spectrum, electrochemical and electron paramagnetic resonance technologies and the like. These compounds can catalyze water splitting in the presence of oxidant to release oxygen and can also catalyze water splitting on the surface of an electrode to release electrons onto the surface of the electrode to form a current.
    Type: Application
    Filed: February 2, 2016
    Publication date: January 11, 2018
    Inventors: Chunxi ZHANG, Changhui CHEN
  • Publication number: 20180003889
    Abstract: The low magnetic sensitivity PM-PCF based on mechanical buffer is obtained by adding buffer structures in the cladding layer of the photonic crystal fiber. In the center of the fiber, the core region contains at least 3 layers of air-holes, enclosed by the cladding layer. The buffer structures are placed in the cladding layer. These buffer structures are formed by replacing silica of any shape by air, and are symmetrically located in X-axis and Y-axis directions to achieve mechanical isotropy. The buffer structures improve the fiber's performance in fiber coiling and stress conditions. Therefore, the fiber optic gyroscope using the PM-PCF can do without a magnetic shield, thus greatly reducing the weight of the fiber optic gyroscope and extending the scope of its application. Compared with the conventional commercial PCF, the PM-PCF provides the fiber optic gyroscope with lower temperature sensitivity and improved accuracy.
    Type: Application
    Filed: June 22, 2017
    Publication date: January 4, 2018
    Inventors: Jingming Song, Chunxi Zhang, Weile Li, Wei Cai, Jing Jin, Ningfang Song
  • Publication number: 20120003132
    Abstract: Deoxygenation catalyst for coal mine methane, its preparation method and application in catalytic deoxygenation of coal mine methane in oxygen-containing environment. The catalyst comprises a first composition serving as the active content and a second composition serving as the additive. The first composition consists of one or more platinum group noble metals selecting from the group consisting of Pd, Pt, Ru, Rh and Ir. The second composition consists of one or more alkaline metals or alkaline earth metals selected from the group consisting of Na2O, K2O, MgO, CaO, SrO and BaO; CeO2 and lanthanides rare earth metals such as Pr, Nd, Sm, Eu, Gd, etc.; and/or transition metals such as Y, Zr, La, etc.; and/or Al2O3 oxides complexes. Said catalyst can effectively eliminate the oscillatory behavior during catalytic combustion under oxyen-lean condition.
    Type: Application
    Filed: April 19, 2010
    Publication date: January 5, 2012
    Inventors: Shudong Wang, Sheng Wang, Zhongshan Yuan, Chunxi Zhang, Changjun Ni, Deyi Li