Patents by Inventor Chunxin Ji

Chunxin Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230338940
    Abstract: The disclosure provides a platinum-containing three-way conversion (TWC) catalyst, and a system for treating an exhaust gas stream from a gasoline engine using the TWC catalyst. The system is configured to introduce controlled quantities of hydrogen gas into the exhaust gas stream upstream of the platinum-containing TWC catalyst article during a cold-start period. Further provided are related methods of treating such exhaust streams. Such systems and methods are useful in reducing a level of one or more of hydrocarbons, carbon monoxide, and nitrogen oxide in a gaseous exhaust stream from a gasoline engine.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 26, 2023
    Inventors: Shiang Sung, Chunxin Ji, Pavel Ruvinskiy
  • Publication number: 20230191372
    Abstract: Disclosed herein is a catalyst for particulate combustion which is essentially free of platinum group metal compounds and the catalyst comprises a carrier and at least one metal oxide chosen from iron oxide and manganese oxide, and combinations thereof.
    Type: Application
    Filed: June 30, 2021
    Publication date: June 22, 2023
    Inventors: Karifala DUMBUYA, Thomas SCHMITZ, Chunxin JI, Florian WALTZ, Stephan SIEMUND, Holger SCHWEKENDIEK
  • Publication number: 20220212170
    Abstract: The presently claimed invention provides a catalytic article and an exhaust gas treatment system. The catalytic article comprises platinum supported on a first support comprising ceria containing metal oxide component; rhodium supported on a second support selected from a refractory alumina component, an oxygen storage component or a combination thereof; and a substrate, wherein said catalytic article is essentially free of palladium. The presently claimed invention also provides a process for preparing the catalytic article and use of the catalytic article and the exhaust gas treatment system for purifying a gaseous exhaust stream comprising hydrocarbons, carbon monoxide, and nitrogen oxide.
    Type: Application
    Filed: June 23, 2020
    Publication date: July 7, 2022
    Inventors: Shiang SUNG, Xiaolai ZHENG, Aleksei VJUNOV, Chunxin JI, Karifala DUMBUYA
  • Publication number: 20190240643
    Abstract: The present disclosure provides a three-way conversion (TWC) catalyst composition, and a catalyst article comprising such a catalyst composition suitable for at least partial conversion of gaseous hydrocarbons (HCs), carbon monoxide (CO), and nitrogen oxides (NOx). Generally, the catalyst article includes a catalyst substrate having a plurality of channels adapted for gas flow, each channel having a wall surface and a catalytic coating on the surfaces or inside the pores of the wall. The catalytic coating generally includes a first washcoat with a platinum group metal (PGM) component and a first refractory metal oxide support and a second washcoat having a plurality of palladium-rhodium nanoparticles and a second refractory metal oxide support.
    Type: Application
    Filed: June 15, 2017
    Publication date: August 8, 2019
    Applicant: BASF Corporation
    Inventors: Andrey Karpov, Benjamin Foulon, Chunxin JI, Knut Wassermann, Michel Deeba, Yipeng Sun
  • Patent number: 9931596
    Abstract: An emissions treatment system for an exhaust stream of an internal combustion engine including hydrocarbons, carbon monoxide, and nitrogen oxides is provided. The disclosed system can include an exhaust conduit in fluid communication with the internal combustion engine via an exhaust manifold; a first three-way conversion catalyst (TWC-1) located downstream of the internal combustion engine in the exhaust conduit; an SCR-HCT catalyst comprising a selective catalytic reduction catalyst and a hydrocarbon trap downstream of the TWC-1 in the exhaust conduit; and a third catalyst downstream of the SCR-HCT combination in the exhaust conduit, the third catalyst comprising a platinum group metal (PGM) e.g., in an amount effective to oxidize hydrocarbons. Methods of making and using such systems and components thereof are also provided.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 3, 2018
    Assignee: BASF Corporation
    Inventors: Xiaolai Zheng, Chunxin Ji, Wen-Mei Xue, Matthew J. Schladt, Xiaoming Wang, Tian Luo, Michel Deeba, Knut Wassermann
  • Publication number: 20170274321
    Abstract: An emissions treatment system for an exhaust stream of an internal combustion engine including hydrocarbons, carbon monoxide, and nitrogen oxides is provided. The disclosed system can include an exhaust conduit in fluid communication with the internal combustion engine via an exhaust manifold; a first three-way conversion catalyst (TWC-1) located downstream of the internal combustion engine in the exhaust conduit; an SCR-HCT catalyst comprising a selective catalytic reduction catalyst and a hydrocarbon trap downstream of the TWC-1 in the exhaust conduit; and a third catalyst downstream of the SCR-HCT combination in the exhaust conduit, the third catalyst comprising a platinum group metal (PGM) e.g., in an amount effective to oxidize hydrocarbons. Methods of making and using such systems and components thereof are also provided.
    Type: Application
    Filed: October 21, 2015
    Publication date: September 28, 2017
    Applicant: BASF CORPORATION
    Inventors: Xiaolai Zheng, Chunxin Ji, Wen-Mei Xue, Matthew J. Schladt, Xiaoming Wang, Tian Luo, Michel Deeba, Knut Wassermann
  • Patent number: 9653737
    Abstract: A method of depositing a conductive material is described. The method includes: providing a plate selected from anode plates, cathode plates, bipolar plates, or combinations thereof, wherein the plate includes gas flow channels; providing a diffusion media in contact with the gas flow channel side of the plate to form an assembly; introducing a gaseous precursor of the conductive material into the assembly using a chemical vapor infiltration process; infiltrating the gaseous precursor into the diffusion media and gas flow channels of the plates; and depositing a coating of the conductive material on the diffusion media, the gas flow channels of the plate, or both. An assembly having a CVI conductive coating and a fuel cell incorporating the diffusion media having the CVI conductive coating are also described.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 16, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul D. Nicotera, Chunxin Ji, Thomas A. Trabold
  • Patent number: 9515328
    Abstract: In at least certain embodiments, the present invention provides a diffusion media and fuel cells and systems employing the diffusion media. In at least one embodiment, the diffusion media comprises a porous matrix having an outer surface and a hydrophilic polymeric coating on at least a portion of the porous matrix with the hydrophilic coating comprising the cured product of a formulation comprising a hydrophilic monomer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 6, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Tao Xie, Chunxin Ji, Yang-Tse Cheng
  • Patent number: 9444107
    Abstract: A method of making an electrode ink containing nanostructured catalyst elements is described. The method comprises providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon, the nanostructure thin catalytic layer comprising nanostructured catalyst elements; providing a transfer substrate with an adhesive thereon; transferring the nanostructured thin catalytic layer from the carrying substrate to the transfer substrate; removing the nanostructured catalyst elements from the transfer substrate; providing an electrode ink solvent; and dispersing the nanostructured catalyst elements in the electrode ink solvent. Electrode inks, coated substrates, and membrane electrode assemblies made from the method are also described.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: September 13, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Sumeet Bhargava, Matthew Dioguardi
  • Patent number: 9023556
    Abstract: Diffusion media for fuel cell is made by preparing an aqueous dispersion comprising a powder resin, a binder material, and a fiber material comprising carbon fibers, of these; forming a layer of the dispersion on a support; removing water from the layer to form a fiber layer; molding the fiber layer; and carbonizing or graphitizing the molded layer.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 5, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Mark Mathias, Margaret Fleming
  • Patent number: 8835075
    Abstract: Diffusion media for use in PEM fuel cells are provided with silicone coatings. The media are made of a porous electroconductive substrate, a first hydrophobic fluorocarbon polymer coating adhered to the substrate, and a second coating comprising a hydrophobic silicone polymer adhered to the substrate. The substrate is preferably a carbon fiber paper, the hydrophobic fluorocarbon polymer is PTFE or similar polymer, and the silicone is moisture curable.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: September 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Vinod Kumar
  • Patent number: 8802329
    Abstract: A method of transferring a nanostructured thin catalytic layer from its carrying substrate to a porous transfer substrate and further processing and restructuring the nanostructured thin catalytic layer on the porous transfer substrate is provided. The method includes transferring the nanostructured catalytic layer from its carrying substrate to a transfer substrate. The nanostructured catalytic layer then is processed and reconstructed, including removing the residual materials and adding additional components or layers to the nanostructured catalytic layer, on the transfer substrate. Methods of fabricating catalyst coated membranes with the reconstructed electrode including the nanostructured thin catalytic layer, reconstructed electrode decals, and catalyst coated proton exchange membranes are also described.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: August 12, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Matthew Dioguardi
  • Patent number: 8658331
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20130260278
    Abstract: A method of making an electrode ink containing nanostructured catalyst elements is described. The method comprises providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon, the nanostructure thin catalytic layer comprising nanostructured catalyst elements; providing a transfer substrate with an adhesive thereon; transferring the nanostructured thin catalytic layer from the carrying substrate to the transfer substrate; removing the nanostructured catalyst elements from the transfer substrate; providing an electrode ink solvent; and dispersing the nanostructured catalyst elements in the electrode ink solvent. Electrode inks, coated substrates, and membrane electrode assemblies made from the method are also described.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 3, 2013
    Inventors: Chunxin Ji, Sumeet Bhargava, Matthew Dioguardi
  • Patent number: 8512908
    Abstract: A method of transferring nanostructured thin catalytic layers to a gas diffusion layer and thus making a catalyst coated diffusion media is described. The method includes treating the gas diffusion layer with a temporary adhesive to temporarily increase the adhesion strength within the microporous layer and to carbon fiber paper substrate, transferring the nanostructured thin catalytic layer to the microporous side of a gas diffusion media layer. The nanostructured thin catalytic layer can then be further processed, including adding additional components or layers to the nanostructured thin catalytic layer on the gas diffusion media layer. Preparation of catalyst coated diffusion media and a catalyst coated diffusion media based membrane electrode assembly (MEA) are also described.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Matthew Dioguardi
  • Patent number: 8507152
    Abstract: A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 13, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Steven G. Goebel, Matthew Dioguardi
  • Patent number: 8481231
    Abstract: A method of making an electrode ink containing nanostructured catalyst elements is described. The method comprises providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon, the nanostructure thin catalytic layer comprising nanostructured catalyst elements; providing a transfer substrate with an adhesive thereon; transferring the nanostructured thin catalytic layer from the carrying substrate to the transfer substrate; removing the nanostructured catalyst elements from the transfer substrate; providing an electrode ink solvent; and dispersing the nanostructured catalyst elements in the electrode ink solvent. Electrode inks, coated substrates, and membrane electrode assemblies made from the method are also described.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Sumeet Bhargava, Matthew Dioguardi
  • Patent number: 8445164
    Abstract: A method of making an electrode is provided. The method includes providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon; providing a transfer substrate with an adjacent adhesive layer; adhering the nanostructured thin catalytic layer adjacent to the adhesive layer to form a composite structure; removing the carrying substrate from the composite structure; and removing the transfer substrate from the composite structure to form the stand-alone nanostructured thin catalytic film comprising the adhesive layer with the nanostructured thin catalytic layer adhered thereto. A stand alone nanostructured thin catalytic film and methods of constructing electrodes with the stand alone nanostructured thin catalytic films are also described.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: May 21, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Matthew Dioguardi, Sumeet Bhargava
  • Patent number: 8409769
    Abstract: A gas diffusion layer for a fuel cell is described. The gas diffusion layer includes a carbon fiber mat having a substantially open structure. Bloomed fibrillated acrylic pulp is added into a microporous layer ink. Alternatively, the bloomed fibrillated acrylic pulp can first be disposed on the carbon fiber mat, with the microporous layer ink added thereafter. When the microporous layer ink/bloomed fibrillated acrylic pulp mixture is coated on the carbon fiber mat, the ink penetrates through the open substrate, and is locked into place by the bloomed acrylic pulp fibers. This allows for a buildup of microporous layer ink on top of the substrate for added thickness when the bloomed fibrillated acrylic pulp sits on top of the mat.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Jeanette E. Owejan
  • Patent number: 8372474
    Abstract: A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bhaskar Sompalli, Chunxin Ji, Susan G. Yan, Hubert A. Gasteiger, Hiroshi Shimoda, Shinji Terazono, Hirokazu Wakabayashi, Atsuo Okawara, Kohta Yamada, Seigo Kotera, Shinji Kinoshita, Toshihiro Tanuma