Patents by Inventor Chwen-Yuan Ku

Chwen-Yuan Ku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240415482
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Application
    Filed: August 23, 2024
    Publication date: December 19, 2024
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 12144670
    Abstract: Disclosed are image recognition Artificial Intelligence (AI) training methods for multiple pulsed X-ray source-in-motion tomosynthesis imaging system. Image recognition AI training can be performed three ways: first, using existing acquired chest CT data set with known nodules to generate synthetic tomosynthesis Images, no X-ray radiation applied; second, taking X-ray raw images with anthropomorphic chest phantoms with simulated lung nodules, applying X-ray beam on phantom only; third, acquiring X-ray images using multiple pulsed source-in-motion tomosynthesis images from real patients with real known nodules and without nodules. An X-ray image recognition training network that is configured to receive X-ray training images, automatically determine whether the received images indicate a nodule or lesion condition. After training, image knowledge is updated and stored at knowledge database.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: November 19, 2024
    Assignee: AIXSCAN Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 12115012
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Grant
    Filed: August 20, 2023
    Date of Patent: October 15, 2024
    Assignee: AIXSCAN
    Inventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-Yuan Ku, Yichin Liu
  • Patent number: 12102469
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Grant
    Filed: November 20, 2023
    Date of Patent: October 1, 2024
    Assignee: AIXScan Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Publication number: 20240266137
    Abstract: Systems and methods for generating X-ray photons. The methods comprise: generating an electron beam; positioning hollow pedestals in the path of the electron beam (the hollow pedestals being radially spaced apart from each other and extending out and away from a major planar face of a base plate); generating X-ray radiation as a result of an interaction of the electron beam with target element(s) disposed at a distal end of a respective pedestal of the hollow pedestals; causing the X-ray radiation to interact with a beam shield comprising wall elements extending out and away from the major planar face of the base plate; and setting at least one of a beam shape and direction of the X-ray radiation by selectively controlling a location where the electron beam intersects the target element(s) to determine an interaction of the X-ray radiation with the wall elements.
    Type: Application
    Filed: March 7, 2024
    Publication date: August 8, 2024
    Inventors: Kalman Fishman, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell, Brian P. Wilfley
  • Patent number: 12042310
    Abstract: A dynamic multi-leaf collimator system for X-ray exposure on region of interest in conjunction with multiple source-in-motion tomosynthesis imaging system is disclosed. The system comprises two opposite banks of thin heavy metal leaves arranged in parallel and stagger formation. The leaves are individually driven by electrical motors, can move in straight line in at least one direction and create multiple X-ray exposure holes with desired shapes. The leaves are made of thin heavy metal capable of blocking kV level X-rays. After a preliminary X-ray imaging scan, artificial intelligence or system operator can determine location of region of interest and then determine location of collimation holes. Therefore, subsequent X-ray imaging scan will be performed with automatic collimation dynamically, X-ray dose on an object or patient is then greatly reduced.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: July 23, 2024
    Assignee: AIXScan Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 12023193
    Abstract: An X-ray imaging system using multiple pulsed X-ray source pairs in-motion to perform highly efficient and ultrafast 3D radiography is presented. The sources move simultaneously on arc trajectory at a constant speed as a group. Each individual source also moves rapidly around its static position in a small distance, but one moves in opposite direction to the other to cancel out linear momentum. Trajectory can also be arranged at a ring structure horizontally. In X-ray source pairs each moves in opposite angular direction to another to cancel out angular momentum. When an individual X-ray source has a speed that equals to group speed but an opposite linear or angular direction, the individual X-ray source is triggered through an external exposure control unit. This allows the source to stay relatively standstill during activation. 3D data can be acquired with wider view in shorter time and image analysis is real-time.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: July 2, 2024
    Assignee: AIxSCAN, Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 12027341
    Abstract: X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: July 2, 2024
    Assignee: EMPYREAN MEDICAL SYSTEMS, INC.
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Patent number: 11992357
    Abstract: A transport system with curved track pair is constructed for multiple pulsed X-ray source-in-motion to perform fast digital tomosynthesis imaging. It includes a curved rigid track pair with predetermined curvature, a primary motor stage car loaded with X-ray sources and wheels loaded with tension or compression springs. The car is driven by primary motor mounted at base frame and an engaged gear mounted at the car. The car can carry heavy loads, travel with high precision and high repeatability at all installation orientations while motion vibration is minimal. It is also scalable to have a larger radius. Track angle span usually can be from about ten degrees to about 170 degrees. During imaging acquisition, X-ray sources can sweep precisely from one location to another. The car has enough clearance to move in its path without rubbing wheels on tracks. Better than 0.2 mm overall spatial precision can be achieved with the digital tomosynthesis imaging.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: May 28, 2024
    Assignee: AIXScan Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Publication number: 20240122568
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Application
    Filed: November 20, 2023
    Publication date: April 18, 2024
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11918403
    Abstract: System and method are disclosed for imaging acquisition from sparse partial scans of distributed wide angle. During real time image reconstruction, artificial intelligence (AI) determines if there is enough information to perform diagnostics based on initial scans. If there is enough information from the fractional scans, then data acquisition stops; if more information is needed, then system performs another round of wide-angle sparse scans in a new location progressively until a result is satisfactory. The system reduces X-ray dose on a patient and performs quicker X-ray scan at multiple pulsed source-in-motion tomosynthesis imaging system. The method and system also significantly reduce the amount of time required to display high quality three-dimensional tomosynthesis images.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: March 5, 2024
    Assignee: AlxSCAN, Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11857359
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Grant
    Filed: March 21, 2023
    Date of Patent: January 2, 2024
    Assignee: AlxScan Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Publication number: 20230404502
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Application
    Filed: August 20, 2023
    Publication date: December 21, 2023
    Inventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-yuan Ku, Yichin Liu
  • Patent number: 11771387
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: October 3, 2023
    Assignee: AIXSCAN Inc.
    Inventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-yuan Ku, Yichin Liu
  • Patent number: 11766231
    Abstract: A system and method for improved image acquisition of multiple pulsed X-ray source-in-motion tomosynthesis imaging apparatus by generating the electrocardiogram (ECG) waveform data using an ECG device. Once a representative cardiac cycle is determined, system will acquire images only at rest period of heart beat. Real time ECG waveform is used as ECG synchronization for image improvement. The imaging apparatus avoids ECG peak pulse for better chest, lung and breast imaging under influence of cardiac periodical motion. As a result, smoother data acquisition, much higher data quality can be achieved. The multiple pulsed X-ray source-in-motion tomosynthesis machine is with distributed multiple X-ray sources that is spanned at wide scan angle. At rest period of one heartbeat, multiple X-ray exposures are acquired from X-ray sources at different angles. The machine itself has capability to acquire as many as 60 actual projection images within about two seconds.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: September 26, 2023
    Assignee: AIXSCAN INC.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11730439
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography using an X-ray flexible curved panel detector is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The sources move simultaneously relative to an object on a predefined arc track at a constant speed as a group. Each individual X-ray source can move around its static position at a small distance. When an individual source has a speed equal to group speed, but with opposite moving direction, the individual source and detector are activated. This allows source to stay relatively standstill during activation. The operation results in reduced source travel distance for each individual source. 3D radiography image data can be acquired with much wider sweep angle in much shorter time, and image analysis can also be done in real-time.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: August 22, 2023
    Assignee: AIXSCAN, Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Publication number: 20230255584
    Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Application
    Filed: March 21, 2023
    Publication date: August 17, 2023
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Publication number: 20230225693
    Abstract: An X-ray imaging system using multiple puked X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple puked X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 20, 2023
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11701072
    Abstract: A modular X-ray source and method for replacement of such an X-ray source are disclosed. The source is inside a consumable modular enclosure where the entire assembly is swapped out during maintenance. The enclosure covers an X-ray tube, high voltage circuit boards 6 and cooling insulating oil are arranged inside the module enclosure. The enclosure structure includes an X-ray window, connector engagement alignment guide and electrical connectors. The modular X-ray source is used in a multiple source tomosynthesis imaging system where multiple pulsed X-ray sources are utilized. The easy replacement of X-ray tube assembly inside the consumable modular enclosure results in lower maintenance cost and overall reliable X-ray imaging machine. The modular source has potential to increase the machine volume in the field and create new standards for replaceable modular X-ray source.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: July 18, 2023
    Assignee: AlxSCAN, Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11672491
    Abstract: Validation of a therapeutic radiation treatment involves using an applicator balloon surrounding an X-ray radiation source to support a plurality of X-ray sensor elements (XRSE). The XRSE are supported on the applicator balloon at distributed locations to sense applied radiation from the radiation source. At least one parameter of the applied radiation which has been sensed by the XRSE is compared to a corresponding parameter of a predetermined radiation treatment plan. Based on the comparing, a determination is made as to whether one or more requirements of the predetermined radiation treatment plan have been satisfied.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 13, 2023
    Assignee: EMPYREAN MEDICAL SYSTEMS, INC.
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell, Yonatan Vainer