Patents by Inventor Chyiu-Hyia Poon

Chyiu-Hyia Poon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8912102
    Abstract: A system for and method of processing an article such as a semiconductor wafer is disclosed. The wafer includes first and second surfaces which are segmented into a plurality of first and second zones. The first surface of the wafer, for example, on which devices or ICs are formed is processed by, for example, laser annealing while the second surface is heated with a backside heating source. Corresponding, or at least substantially corresponding, zones on the first and second surfaces are processed synchronously to reduce variations of post laser anneal thermal budget across the wafer.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 16, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chyiu Hyia Poon, Alex K H See, Meisheng Zhou
  • Patent number: 8860142
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: October 14, 2014
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Debora Chyiu Hyia Poon, Alex K H See, Francis Benistant, Benjamin Colombeau, Yun Ling Tan, Mei Sheng Zhou, Liang Choo Hsia
  • Patent number: 8324011
    Abstract: The present invention provides a method of annealing a semiconductor by applying a temperature-dependant phase switch layer to a semiconductor structure. The temperature-dependant phase switch layer changes phase from amorphous to crystalline at a predetermined temperature. When the semiconductor structure is annealed, electromagnetic radiation passes through the temperature-dependant phase switch layer before reaching the semiconductor structure. When a desired annealing temperature is reached the temperature-dependant phase switch layer substantially blocks the electromagnetic radiation from reaching the semiconductor structure. As a result, the semiconductor is annealed at a consistent temperature across the wafer. The temperature at which the temperature-dependant phase switch layer changes phase can be controlled by an ion implantation process.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: December 4, 2012
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chyiu Hyia Poon, Alex See, Mei Sheng Zhou
  • Patent number: 8293544
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: October 23, 2012
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Debora Chyiu Hyia Poon, Alex Kh See, Francis Benistant, Benjamin Colombeau, Yun Ling Tan, Mei Sheng Zhou, Liang Choo Hsia
  • Publication number: 20100221926
    Abstract: A system for and method of processing an article such as a semiconductor wafer is disclosed. The wafer includes first and second surface which are segmented into a plurality of first and second zones. The first surface of the wafer, for example, on which devices or ICs are formed is processed by, for example, laser annealing while the second surface is heated with a backside heating source. Corresponding zones on the first and second surfaces are processed synchronously to reduce variations of post laser anneal thermal budge across the wafer.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 2, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Chyiu Hyia Poon, Alex Kh See, Meisheng Zhou
  • Publication number: 20100019329
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 28, 2010
    Inventors: Debora Chyiu Hyia Poon, Alex KH See, Francis Benistant, Benjamin Colombeau, Yun Ling Tan, Mei Sheng Zhou, Liang Choo Hsia
  • Publication number: 20090068825
    Abstract: The present invention provides a method of annealing a semiconductor by applying a temperature-dependant phase switch layer to a semiconductor structure. The temperature-dependant phase switch layer changes phase from amorphous to crystalline at a predetermined temperature. When the semiconductor structure is annealed, electromagnetic radiation passes through the temperature-dependant phase switch layer before reaching the semiconductor structure. When a desired annealing temperature is reached the temperature-dependant phase switch layer substantially blocks the electromagnetic radiation from reaching the semiconductor structure. As a result, the semiconductor is annealed at a consistent temperature across the wafer. The temperature at which the temperature-dependant phase switch layer changes phase can be controlled by an ion implantation process.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Inventors: CHYIU HYIA POON, Alex See, Mei Sheng Zhou
  • Patent number: 7112499
    Abstract: A process is described to form a semiconductor device such as MOSFET or CMOS with shallow junctions in the source/drain extension regions. After forming the shallow trench isolations and the gate stack, sidewall dielectric spacers are removed. A pre-amorphizing implant (PAI) is performed with Ge+ or Si+ ions to form a thin PAI layer on the surface of the silicon regions adjacent to the gate stack. B+ ion implantation is then performed to form source/drain extension (SDE) regions. The B+ implant step is then followed by multiple-pulsed 248 nm KrF excimer laser anneal with pulse duration of 23 ns. This step is to reduce the sheet resistance of the junction through the activation of the boron dopant in the SDE junctions. Laser anneal is then followed by rapid thermal anneal (RTA) to repair the residual damage and also to induce out-diffusion of the boron to yield shallower junctions than the just-implanted junctions prior to RTA.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: September 26, 2006
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chyiu Hyia Poon, Leng Seow Tan, Byung Jin Cho, Alex See, Mousumi Bhat
  • Patent number: 6897118
    Abstract: A method for forming a highly activated ultra shallow ion implanted semiconductive elements for use in sub-tenth micron MOSFET technology is described. A key feature of the method is the ability to activate the implanted impurity to a highly active state without permitting the dopant to diffuse further to deepen the junction. A selected single crystalline silicon active region is first amorphized by implanting a heavy ion such as silicon or germanium. A semiconductive impurity for example boron is then implanted and activated by pulsed laser annealing whereby the pulse fluence, frequency, and duration are chosen to maintain the amorphized region just below it's melting temperature. It is found that just below the melting temperature there is sufficient local ion mobility to secure the dopant into active positions within the silicon matrix to achieve a high degree of activation with essentially no change in concentration profile.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: May 24, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chyiu-Hyia Poon, Byung Jin Cho, Yong Feng Lu, Alex See, Mousumi Bhat