Patents by Inventor Ciaran McGuinness

Ciaran McGuinness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372095
    Abstract: A balloon catheter configured for delivery of a prosthetic heart valve is provided. The balloon catheter is configured to deploy a prosthetic heart valve through inflation. The balloon catheter is provided with a reinforcing member configured to increase the rigidity of the balloon catheter over an operational portion of the device. The increased rigidity serves to prevent damage to an introducer sheath, patient anatomy, or the prosthetic heart valve during delivery of the prosthetic heart valve.
    Type: Application
    Filed: October 7, 2021
    Publication date: November 23, 2023
    Inventors: Reiss CONNOLLY, Niall DUFFY, Jim PHELAN, Constantin CIOBANU, Marc ANDERSON, Eoghan TWOHIG, Gavin MOORE, Michael O'CONNOR, Stephen MONTGOMERY, Gerard COONEY, Micheal FALLON, Huda KHILJI, David LYDON, Alan MCGUINN, Ciaran MCGUINNESS, Conleth MULLEN, Matthew NORGROVE, Tomas KITT
  • Patent number: 11464946
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 11, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Paul Devereux, Paraic Frisby, Frank White, Tomas Kitt, Marc Anderson, Grainne Carroll, Ciaran McGuinness, Tim Jones, Patrick Griffin
  • Publication number: 20210322165
    Abstract: The disclosure generally relates to delivery devices for transcatheter delivery of a prosthesis. The delivery device includes a hollow shaft on which the prosthesis is supported. A handle assembly maintains the shaft. The delivery device further includes a guide wire that is selectively directed through the handle assembly and shaft. The guide wire directs the shaft to a target site at which the prosthesis is to be deployed. In practice, an operator managing the inner catheter controls the prosthesis positioning. The delivery devices disclosed herein are configured to ergonomically also allow the operator to control the position of the guide wire as the position of the guide wire influences the deployment position of the prosthesis. In this way, a second operator for positioning the guide wire can be omitted. Embodiments of the disclosure are believed to improve positioning predictability and ease of use.
    Type: Application
    Filed: February 19, 2021
    Publication date: October 21, 2021
    Applicant: Medtronic, Inc.
    Inventors: Stephen A. Montgomery, Ciaran McGuinness
  • Publication number: 20210161661
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 3, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Patent number: 10925728
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 23, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Publication number: 20200101268
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Application
    Filed: November 27, 2019
    Publication date: April 2, 2020
    Inventors: Paul DEVEREUX, Paraic FRISBY, Frank WHITE, Tomas KITT, Marc ANDERSON, Grainne CARROLL, Ciaran MCGUINNESS, Tim JONES, Patrick GRIFFIN
  • Patent number: 10493248
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 3, 2019
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Paul Devereux, Paraic Frisby, Frank White, Tomas Kitt, Marc Anderson, Grainne Carroll, Ciaran McGuinness, Tim Jones
  • Publication number: 20190254816
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 22, 2019
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Publication number: 20180126127
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 10, 2018
    Inventors: Paul Devereux, Paraic Frisby, Frank White, Tomas Kitt, Marc Anderson, Grainne Carroll, Ciaran McGuinness, Tim Jones, Patrick Griffin