Patents by Inventor Cindy Adam

Cindy Adam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9056806
    Abstract: The present invention relates to a process for the conversion of an alcohols mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), mixed with a stream (D1) comprising olefins having 4 carbon atoms or more (C4+ olefins), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 500° C.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 16, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 9056807
    Abstract: The present invention relates to a process for the conversion of an alcohol mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 450° C.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 16, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20140296599
    Abstract: A catalyst can include a phosphorus modified zeolite having partly an ALPO structure. The ALPO structure can be determined by a signal between 35-45 ppm in 27Al MAS NMR spectrum. The zeolite can include at least one ten member ring in the structure thereof. The catalyst can also include a binder and one or more metal oxides. The catalyst can be used in processes in the presence of steam at high temperatures, such as temperatures that are above 300° C. and up to 800° C. The catalyst can be used in alcohol dehydration, olefin cracking, MTO processes, and alkylation of aromatic compounds with olefins and/or alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: October 2, 2014
    Applicant: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath
  • Publication number: 20140243570
    Abstract: A catalyst can be used to convert an alcohol in a dehydration process into an olefin having the same number of carbon atoms as the alcohol. The catalyst can include a phosphorus modified zeolite made by providing a zeolite with at least one ten member ring in the structure, steaming the zeolite, mixing the zeolite with binders and shaping additives, and shaping the zeolite. An ion-exchange step can be performed, and the shaped catalyst can be steamed. Phosphorus can be introduced on the catalyst at an amount of at least 0.1 wt %, such as by dry impregnation or chemical vapor deposition. A metal can be introduced. The catalyst can be washed and/or calcinated, and steamed in an equilibration step. The steaming severity (X) can be at least about 2. The catalyst can be steamed at a temperature above 625° C., such as a temperature ranging from 700 to 800° C.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath, Joseph Lopez, Patrick Euzen
  • Publication number: 20140243568
    Abstract: A method to make a phosphorus modified zeolite can include providing a zeolite including at least one ten member ring in the structure steaming the zeolite, mixing the zeolite with one or more binders and shaping additives, and then shaping the mixture. The method can include making a ion-exchange. The shaped mixture can be steamed. Phosphorous can be introduced on the catalyst to introduce at least 0.1 wt % of phosphorus, such as be dry impregnation or chemical vapor deposition. A metal, such as calcium, can be introduced. The catalyst can be washed, calcinated, and then steamed. The steaming severity (X) can be at least about 2. The catalyst can be steamed at a temperature above 625° C., such as a temperature ranging from 700 to 800° C. The catalyst can be used in alcohol dehydration, olefin cracking, MTO processes, and alkylation of aromatics by alcohols with olefins and/or alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath
  • Publication number: 20140194662
    Abstract: A method to make a phosphorus modified zeolite can include providing a zeolite having at least one ten member ring, making an ion-exchange, steaming the zeolite, and introducing phosphorus on the zeolite. The zeolite can be mixed with one or more binders and shaping additives, and then shaped. A metal can be introduced, and the catalyst can be washed, calcined, and steamed in an equilibration step. The steaming can be at performed at a steam severity (X) of at least about 2. The steaming can be performed at a temperature above 625° C. The catalyst can be used in alcohol dehydration, olefin cracking, MTO processes, and alkylation of aromatics by alcohols with olefins and/or alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: July 10, 2014
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath
  • Publication number: 20140148630
    Abstract: The present invention relates to a process for the conversion of an alcohol mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 450° C.
    Type: Application
    Filed: July 8, 2011
    Publication date: May 29, 2014
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130261345
    Abstract: The present invention relates to a process for the production of fuel additives in which in a first step isobutanol is subjected to a simultaneous dehydration and skeletal isomerisation to make substantially corresponding olefins, having the same number of carbons and consisting essentially of a mixture of n-butenes and iso-butene and in a second step the butene mixture is subjected to etherification, said process comprising: a) introducing in at least one reactor a stream (A) comprising at least 40 wt % isobutanol, optionally an inert component, b) contacting said stream with at least one catalyst in said reactor(s) at conditions effective to simultaneously dehydrate and skeletal isomerise at least a portion of the isobutanol to make a mixture of n-butenes and iso-butene, c) removing the inert component if any, recovering from said reactor(s) a stream (B) comprising a mixture of n-butenes and iso-butene, d) sending the stream (B) to at least one etherification reactor and contacting stream (B) with at lea
    Type: Application
    Filed: December 20, 2011
    Publication date: October 3, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Cindy Adam, Delphine Minoux, Nikolaï Nesterenko
  • Publication number: 20130245348
    Abstract: The present invention relates to a process for the production of propylene in which in a first step isobutanol is subjected to a simultaneous dehydration and skeletal isomerisation to make substantially corresponding olefins, having the same number of carbons and consisting essentially of a mixture of n-butenes and iso-butene and in a second step n-butenes are subjected to methathesis, said process comprising: a) introducing in a reactor a stream (A) comprising isobutanol, optionally water, optionally an inert component, b) contacting said stream with a catalyst in said reactor at conditions effective to dehydrate and skeletal isomerase at least a portion of the isobutanol to make a mixture of n-butenes and iso-butene, c) recovering from said reactor a stream (B), removing water, the inert component if any and unconverted isobutanol if any to get a mixture of n-butenes and iso-butene, d) fractionating said mixture to produce a n-butenes stream (N) and to remove the essential part of isobutene optionally recy
    Type: Application
    Filed: March 15, 2011
    Publication date: September 19, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Walter Vermeiren, Cindy Adam, Delphine Minoux
  • Publication number: 20130217935
    Abstract: The present invention relates to a process for making essentially ethylene and propylene comprising: a) providing an alcohol mixture (A) comprising about 20 w % to 100% isobutanol, b) introducing in a reactor (A) a stream comprising the mixture (A) mixed with methanol or dimethyl ether or mixture thereof, optionally water, optionally an inert component, c) contacting said stream with a catalyst (A1) in said reactor (A), the MTO reactor, at conditions effective to convert at least a part of the alcohol mixture (A) and at least a part of the methanol and/or dimethyl ether to olefins, d) recovering from said reactor (A) an effluent comprising: ethylene, propylene, butene, water, optionally unconverted alcohols, various hydrocarbons, and the optional inert component of step b), e) fractionating said effluent of step d) to produce at least an ethylene stream, a propylene stream, a fraction consisting essentially of hydrocarbons having 4 carbon atoms or more, water and the optional inert component of step a), op
    Type: Application
    Filed: July 8, 2011
    Publication date: August 22, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130217943
    Abstract: The present invention is a process for the dehydration of an alcohol having at least 2 carbon atoms to make the corresponding olefin, comprising: a) introducing in a reactor a stream (A) comprising at least an alcohol, optionally water, optionally an inert component, b) contacting said stream with an acidic catalyst in said reactor at conditions effective to dehydrate at least a portion of the alcohol to make an olefin, c) recovering from said reactor a stream (B) comprising: the inert component and at least an olefin, water and optionally unconverted alcohol, d) optionally fractionating the stream (B) to recover the unconverted alcohol and recycling said unconverted alcohol to the reactor of step a), e) optionally fractionating the stream (B) to recover the inert component, water and the olefin and optionally recycling said inert component and optionally a part of the water to the reactor of step a), wherein, f) an effective amount of a component capable to neutralize a part of the catalyst active site is i
    Type: Application
    Filed: June 20, 2011
    Publication date: August 22, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Delphine Minoux, Cindy Adam, Nikolai Nesterenko, Jean-Pierre Dath, Walter Vermeiren, Sander Van Donk
  • Publication number: 20130204058
    Abstract: The present invention relates to a process for the conversion of an alcohols mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) (also called the first reaction zone or low temperature reaction zone) a stream comprising the mixture (A), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) in said reactor (A) at conditions effective to dehydrate: at least a portion of the isobutanol to essentially butenes, at least a portion of other alcohols, if any, to essentially olefins other than butene having the same carbon number as the alcohol precursor, c) recovering from said reactor (A) an effluent comprising: butenes, optionally olefins other than butene, water, optionally unconverted alcohols of the mixture (A), various hydrocarbons, and the optional inert component of step a), d) fractionating said effluent of step c) to remove a portion or all the water, unconverted alcohols, optionally th
    Type: Application
    Filed: July 8, 2011
    Publication date: August 8, 2013
    Applicant: Total Research & Technology Feluy
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130204057
    Abstract: The present invention (in a first embodiment) relates to a process for the simultaneous dehydration and skeletal isomerisation of isobutanol to make substantially corresponding olefins, having the same number of carbons and consisting essentially of a mixture of n-butenes and iso-butene, said process comprising: a) introducing in a reactor a stream (A) comprising isobutanol, optionally water, optionally an inert component, b) contacting said stream with a catalyst in said reactor at conditions effective to dehydrate and skeletal isomerise at least a portion of the isobutanol to make a mixture of n- butenes and iso-butene, c) recovering from said reactor a stream (B), removing water, the inert component if any and unconverted isobutanol if any to get a mixture of n-butenes and iso-butene, Wherein, the WHSV of the isobutanol is at least 1 h?1 or the temperature is from 200° C. to 600° C. and the catalyst is capable to make simultaneously the dehydration and skeletal isomerization of butene.
    Type: Application
    Filed: March 15, 2011
    Publication date: August 8, 2013
    Applicant: Total Research & Technology Feluy
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130204059
    Abstract: The present invention relates to a process for the conversion of an alcohols mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), mixed with a stream (D1) comprising olefins having 4 carbon atoms or more (C4+ olefins), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 500° C.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 8, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130190547
    Abstract: A process for dehydration of an ethanol feedstock into ethylene, comprising the vaporization of said ethanol feedstock in a mixture with at least a portion of the recycled purified water stream from heat exchange with the effluent that is obtained from the last reactor.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 25, 2013
    Applicants: IFP Energies nouvelles, TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Vincent COUPARD, Natacha Touchais, Stephanie Fleurier, Helena Gonzalez Penas, Walter Vermeiren, Delphine Minoux, Philip De Smedt, Cindy Adam
  • Publication number: 20130041196
    Abstract: The present invention (in a first embodiment) relates to a process for the dehydration of an alcohol having at least 2 carbon atoms to make the corresponding olefin, comprising: introducing in a reactor a stream (A) comprising at least an alcohol, optionally water, optionally an inert component, contacting said stream with a catalyst in said reactor at conditions effective to dehydrate at least a portion of the alcohol to make an olefin, recovering from said reactor an olefin containing stream (B), Wherein, the catalyst is a crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MIT or TON having Si/Al under 100, or a dealuminated crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, or a phosphorus modified crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, the WHSV of the alcohol is at least 4 h?1 and/or the temperature ranges from 320° C. to 600° C.
    Type: Application
    Filed: January 21, 2011
    Publication date: February 14, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Delphine Minoux, Nikolai Nesterenko, Cindy Adam, Sander Van Donk, Walter Vermeiren