Patents by Inventor Cindy Qiu

Cindy Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160126355
    Abstract: In one embodiment of the invention, a high electron mobility thin film transistor with a plurality of gate insulating layers and a metal oxynitride active channel layer is provided for forming a backplane circuit for pixel switching in an electronic display, to reduce unwanted ON state series resistance in the metal oxynitride active channel layer and minimize unwanted power dissipation in the backplane circuit. Another embodiment of the invention provides a high electron mobility thin film transistor structure with a plurality of metal oxynitride active channel layers and a gate insulating layer for forming a backplane circuit for pixel switching in an electronic display, to reduce unwanted ON state series resistance in the metal oxynitride active channel layer and to minimize unwanted power dissipation in the backplane circuit.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Inventors: Ishiang Shih, Andy Shih, Cindy Qiu, Julia Qiu, Yi-Chi Shih, Chunong Qiu
  • Patent number: 9324739
    Abstract: In one embodiment of the invention, a high electron mobility thin film transistor with a plurality of gate insulating layers and a metal oxynitride active channel layer is provided for forming a backplane circuit for pixel switching in an electronic display, to reduce unwanted ON state series resistance in the metal oxynitride active channel layer and minimize unwanted power dissipation in the backplane circuit. Another embodiment of the invention provides a high electron mobility thin film transistor structure with a plurality of metal oxynitride active channel layers and a gate insulating layer for forming a backplane circuit for pixel switching in an electronic display, to reduce unwanted ON state series resistance in the metal oxynitride active channel layer and to minimize unwanted power dissipation in the backplane circuit.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: April 26, 2016
    Inventors: Ishiang Shih, Andy Shih, Cindy Qiu, Julia Qiu, Yi-Chi Shih, Chunong Qiu
  • Publication number: 20060043372
    Abstract: For light emitting devices used in conventional information displays, the dimensions of each light emitting device are small and the effect of series resistance of electrodes is not too severe in affecting the performance of the displays. When the dimensions or areas of the devices increase for large area display applications, the effect of series resistance becomes significant. This invention provides a light emitting device and array having a reduced effective series resistance for the optically transparent and electrically conducting oxide electrodes.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventors: Cindy Qiu, Chunong Qiu, Yi-Chi Shih
  • Publication number: 20060036065
    Abstract: The present invention discloses soluble copolymers of aniline and thiophene having a general formula I. Wherein: m and n each independently represents an integer, with m?1 and n?2. R1, R2, R3, R4, R5, R6 and R7 each independently represents, hydrogen atom, or a liner or branched or cyclo aliphatic group having from 1 to 20 carbon atoms, or an aromatic group having from 5 to 30 carbon atoms, or any other functional group, but at least one among R1, R2, R3, R4, R5, R6, and R7 is not a hydrogen atom. The present invention also teaches methods for the synthesis, characterization and application of the disclosed copolymers.
    Type: Application
    Filed: August 16, 2004
    Publication date: February 16, 2006
    Inventors: Steven Xiao, Chunong Qiu, Cindy Qiu
  • Publication number: 20060036097
    Abstract: The present invention relates to oxadiazole metallic complexes. More specifically it relates to the synthesis and electronic and opto-electronic applications of oxadiazole metallic complexes having a general Formula I, wherein each of variables is defined herein.
    Type: Application
    Filed: August 13, 2004
    Publication date: February 16, 2006
    Inventors: Chunong Qiu, Steven Xiao, Cindy Qiu
  • Publication number: 20060033098
    Abstract: Organic semiconductor-based devices such as thin film transistors, organic light emitting devices and solar cells have potential in low cost electronic and optoelectronic applications. The performance of these organic semiconductor-based devices is often limited by the large resistance between the organic semiconductors and counter electrodes. This invention provides device structures and methods to reduce the unwanted resistance.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 16, 2006
    Inventors: Ishiang Shih, Yi Chen, Chunong Qiu, Cindy Qiu, Steven Xiao
  • Publication number: 20050275038
    Abstract: In electronic displays or imaging units, the control of pixels is achieved by an array of transistors. These transistors are in a thin film form and arranged in a two-dimensional configuration to form switching circuits, driving circuits or even read-out circuits. In this invention, thin film transistors and circuits with indium oxide-based channel layers are provided. These thin film transistors and circuits may be fabricated at low temperatures on various substrates and with high charge carrier mobilities. In addition to conventional rigid substrates, the present thin film transistors and circuits are particularly suited for the fabrication on flexible and transparent substrates for electronic display and imaging applications. Methods for the fabrication of the thin film transistors with indium oxide-based channels are provided.
    Type: Application
    Filed: June 14, 2004
    Publication date: December 15, 2005
    Inventors: Yi-Chi Shih, Cindy Qiu, Ishiang Shih, Chunong Qiu
  • Publication number: 20050045874
    Abstract: The present invention discloses a vertical junction structure with multi-PN channels, which provides a maximum interface between p-type and n-type materials in order to assist the charge separation, and offers continuous phases in both p- and n-type materials for charge transport in opposite directions. The present invention also provides methods for constructing the device structures. The main steps include 1) assembling a porous structure or a framework with semiconductor materials of one conduction type on a first electrode, 2) filling pores or coating the framework made from the materials in step 1 with semiconductors or precursors of conducting polymer of a opposite conduction type, 3) chemically and physically treating the system to form closed packed multi-PN channels.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 3, 2005
    Inventors: Steven Xiao, Chunong Qiu, Cindy Qiu
  • Publication number: 20050046523
    Abstract: Photonic Band Gap (PBG) structures are utilized in microwave components as filters to suppress unwanted signals because they have the ability to produce a bandstop effect at certain frequency range depending on the structural dimensions. The unique property of PBG structures is due to the periodic change of the dielectric permittivity so interferences are created with the traveling electromagnetic waves. Such periodic arrangement could exist either inside of the dielectric substrate or in the ground plane of a microstrip transmission line structure. This invention provides tunable or switchable planar PBG structures, which contains lattice pattern of periodic perforations inside of the ground plane. The tuning or switching of the bandstop characteristics is achieved by depositing a conducting island surrounded by a layer of controllable thin film with variable conductivities.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 3, 2005
    Inventors: Jay Wu, Chunong Qiu, Cindy Qiu, Ishiang Shih
  • Publication number: 20050024161
    Abstract: As the basic building block of microwave and millimeter wave units and circuits, the microwave switch must fulfill several requirements including low insertion loss, high isolation and small dimensions. For conventional electrostatically actuated microwave MEMS switches, the isolation between DC and RF is achieved using an RF choke. In this invention, a miniature electrostatically actuated microwave switch with a cantilever and employing two resistive lines on a first substrate and act as the actuation electrodes is provided. The resistive lines as the actuation electrodes according to this invention allows one to minimize the switch dimensions, to facilitate the integration and minimize the interference of the propagating microwave or millimeter wave signals.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 3, 2005
    Inventors: Cindy Qiu, Chunong Qiu, Yi-Chi Shih
  • Publication number: 20050019976
    Abstract: This invention discloses methods for the fabrication of organic semiconductor material-based devices under non-vacuum environment. In one embodiment, electrodes are formed by electrodeposition from an electrolyte containing ions or complexes of the electrode materials to be deposited. In another embodiment, electrodes are formed by solution processing from a solution (or ink) containing nano-particle of the electrode materials or the precursor of electrode materials to be deposited. In addition, two different modes, either layer by layer or layer to layer, are disclosed for the fabrication of organic semiconductor material-based devices, wherein all semiconductor organic materials required by the function of the desired device are deposited under an non-vacuum environment.
    Type: Application
    Filed: July 22, 2003
    Publication date: January 27, 2005
    Inventors: Steven Xiao, Chunong Qiu, Cindy Qiu
  • Publication number: 20050009227
    Abstract: This invention discloses structures of organic materials-based semiconductor devices and methods for the fabrication of such devices. According to this invention, each of the devices has a first part and a second part. The first part has at least a first organic semiconductor material layer deposited on a first electrode and the second part has at least a second organic semiconductor material layer deposited on a second electrode. Said device is formed by assembling the two individual parts together. Each part maybe fabricated separately and consists of an electrode coated with semiconductor organic materials required by the function of the desired device. A schematic diagram in the FIG. 3 shows a first part (11) consisting of a first substrate (13), a first electrode (14) and at least one layer of organic materials (15); the second part (12) of the device consisting of the second substrate (16), a second electrode (17) with at least a layer of organic materials (18).
    Type: Application
    Filed: July 11, 2003
    Publication date: January 13, 2005
    Inventors: Steven Xiao, Chunong Qiu, Cindy Qiu