Patents by Inventor Claas Muller

Claas Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9664633
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 30, 2017
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Müller, Mirko Frank
  • Publication number: 20160008990
    Abstract: In the case of a manipulation and/or examination instrument (1) which includes at least two links (2, 3) which are connected in an articulated manner to one another via a double joint (4), wherein a bend of the double joint (4) can be specified with at least two pushing and/or pulling elements (5, 6, 7, 34, 35, 36), whose respective lengths can be adjusted individually, it is proposed to form a pivot spacing (10) of the pivots (8, 9) of the double joint (4) to be longer than a free spacing (11) between the links (2, 3).
    Type: Application
    Filed: July 7, 2015
    Publication date: January 14, 2016
    Applicant: SCHOLLY FIBEROPTIC GMBH
    Inventors: Marcus Franz, Klaus Wolter, Matthias Kratschmer, Jochen Dietrich, Claas Muller
  • Publication number: 20150352584
    Abstract: In the case of a high-pressure cleaning instrument (1), it is proposed to form a flexible portion (7) of a liquid passage (3) between an instrument tip (4) and an operating end (19) in links (8, 9, 10) which are connected to one another in an articulated manner, wherein adjacent links (8, 9, 10) are connected to one another via at least one joint (11, 21) in each case and each have a pressure-application surface (14, 27) on a joint head (15, 24), with which pressure application surface the respective at least one joint (11, 21) is fixed or can be fixed in the liquid passage (3) in a pressure-dependent manner by an internal pressure.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 10, 2015
    Applicant: SCHOLLY FIBEROPTIC GMBH
    Inventors: Marcus Franz, Klaus Wolter, Matthias Kratschmer, Jochen Dietrich, Claas Muller, Holger Reinecke
  • Patent number: 8715884
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 6, 2014
    Assignee: Micronas GmbH
    Inventors: Mirko Lehmann, Claas Muller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Patent number: 8129861
    Abstract: A voltage supply has a plurality of voltage sources to supply output connections. To achieve closed-loop control of the output voltage at the output connections, a closed-loop control circuit is provided that has an actuating element for each voltage source, and each respective actuating element has a current path via which a connection of the respective voltage source can be connected to an output connection. Each actuating element has an actuating signal input for setting the electrical conductivity of its current path. The closed-loop control circuit has a closed-loop controller to which the output voltage and a desired voltage signal are supplied. When a deviation occurs between the output voltage and the desired voltage signal, the closed-loop controller interacts with at least one actuating signal input in order to reduce the deviation.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: March 6, 2012
    Assignee: Micronas GmbH
    Inventors: Matthias Kuhl, Claas Müller, Yiannos Manoli, Gilbert Erdler
  • Publication number: 20100096930
    Abstract: A voltage supply has a plurality of voltage sources to supply output connections. To achieve closed-loop control of the output voltage at the output connections, a closed-loop control circuit is provided that has an actuating element for each voltage source, and each respective actuating element has a current path via which a connection of the respective voltage source can be connected to an output connection. Each actuating element has an actuating signal input for setting the electrical conductivity of its current path. The closed-loop control circuit has a closed-loop controller to which the output voltage and a desired voltage signal are supplied. When a deviation occurs between the output voltage and the desired voltage signal, the closed-loop controller interacts with at least one actuating signal input in order to reduce the deviation.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 22, 2010
    Applicant: MICRONAS GMBH
    Inventors: Matthias Kuhl, Claas Müller, Yiannos Manoli, Gilbert Erdler
  • Publication number: 20090325038
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Application
    Filed: October 10, 2008
    Publication date: December 31, 2009
    Applicant: MICRONAS GmbH
    Inventors: Mirko Lehmann, Claas Muller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Publication number: 20090188316
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 30, 2009
    Applicant: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Muller, Mirko Frank
  • Patent number: 7462326
    Abstract: Disclosed is a device for detecting at least one ligand contained in a sample that is to be analyzed. Said device comprises an optical waveguide, on the surface of which at least one ligand-specific receptor is directly or indirectly immobilized. The ligand bonds to said receptor during contact therewith. The inventive device comprises at least one optical source of radiation for injecting excitation radiation into the waveguide, the radiation being used for exciting emission of luminescence radiation in accordance with the bonding of the ligand to the receptor. At least one radiation receiver is integrated into the semiconductor substrate of a semiconductor chip so as to detect the luminescence radiation. The waveguide is integrated in a monolithic manner into the semiconductor substrate or is applied thereupon as a wave-guiding layer.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: December 9, 2008
    Assignee: Micronas Holding GmbH
    Inventors: Mirko Lehmann, Claas Müller, Holger Klapproth, Ingo Freund
  • Publication number: 20060051244
    Abstract: Disclosed is a device for detecting at least one ligand contained in a sample that is to be analyzed. Said device comprises an optical waveguide, on the surface of which at least one ligand-specific receptor is directly or indirectly immobilized. The ligand bonds to said receptor during contact therewith. The inventive device comprises at least one optical source of radiation for injecting excitation radiation into the waveguide, the radiation being used for exciting emission of luminescence radiation in accordance with the bonding of the ligand to the receptor. At least one radiation receiver is integrated into the semiconductor substrate of a semiconductor chip so as to detect the luminescence radiation. The waveguide is integrated in a monolithic manner into the semiconductor substrate or is applied thereupon as a wave-guiding layer.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 9, 2006
    Inventors: Mirko Lehmann, Claas Muller, Holger Klapproth, Ingo Freund