Patents by Inventor Claire Callender

Claire Callender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7567734
    Abstract: An optical sensor for sensing information relating to an analyte liquid or gas, has a a planar substrate having a refractive index nc. The planar substrate supports a ridge waveguide having an unclad top portion having a refractive index nr. The substrate serves as cladding layer for the ridge waveguide at a location where the ridge waveguide contacts the substrate. A Bragg grating inscribed in the ridge waveguide has two modes for providing information relating to both temperature and refractive index of the surrounding analyte liquid or gas. A cladding mode has a different response to the analyte when compared to a Bragg resonance response. Both modes have a same reaction to temperature, wherein said Bragg grating is formed within the unclad region of ridge waveguide, wherein nc.<nr. Advantageously multiple parameters can be sensed using only a single Bragg grating.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: July 28, 2009
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, through the Communications Research Centre Canada
    Inventors: Xiaoli Dai, Stephen J. Mihailov, Robert B. Walker, Chantal Blanchetiere, Claire Callender, Huimin Ding, Ping Lu, Dan Grobnic, Christopher W. Smelser, Gino Cuglietta
  • Publication number: 20090041405
    Abstract: An optical sensor for sensing information relating to an analyte liquid or gas, has a a planar substrate having a refractive index nc. The planar substrate supports a ridge waveguide having an unclad top portion having a refractive index nr. The substrate serves as cladding layer for the ridge waveguide at a location where the ridge waveguide contacts the substrate. A Bragg grating inscribed in the ridge waveguide has two modes for providing information relating to both temperature and refractive index of the surrounding analyte liquid or gas. A cladding mode has a different response to the analyte when compared to a Bragg resonance response. Both modes have a same reaction to temperature, wherein said Bragg grating is formed within the unclad region of ridge waveguide, wherein nc<nr. Advantageously multiple parameters can be sensed using only a single Bragg grating.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 12, 2009
    Inventors: Xiaoli Dai, Stephen J. Mihailov, Robert B. Walker, Chantal Blanchetiere, Claire Callender, Huimin Ding, Ping Lu, Dan Grobnic, Christopher W. Smelser, Gino Cuglietta
  • Patent number: 7471866
    Abstract: The invention provides a method for fabricating planar waveguiding structures with embedded microchannels. The method includes the step of depositing, over a planar template having at least one indented feature comprising a ridge of a first optical material and a narrow trench adjacent thereto, a second optical material, and the step of subsequent annealing thereof, so that an embedded hollow microchannel forms within the trench. The method provides planar structures wherein the ridge and the embedded microchannel cooperate to form an optical waveguiding structure having a waveguiding direction collinear with the embedded microchannel. Embodiments of the method for forming microfluidic devices integrating ridge waveguides with hollow microchannels having surface access points for fluid delivery, and for forming photonic crystals, are disclosed together with corresponding device embodiments.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: December 30, 2008
    Assignee: Her Majesty the Queen in Right of Canada as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Patrick Dumais, Chris Ledderhof, Claire Callender, Chantal Blanchetiere, Julian Noad, Glendon Lovell
  • Publication number: 20050287696
    Abstract: The invention provides a method for fabricating planar waveguiding structures with embedded microchannels. The method includes the step of depositing, over a planar template having at least one indented feature comprising a ridge of a first optical material and a narrow trench adjacent thereto, a second optical material, and the step of subsequent annealing thereof, so that an embedded hollow microchannel forms within the trench. The method provides planar structures wherein the ridge and the embedded microchannel cooperate to form an optical waveguiding structure having a waveguiding direction collinear with the embedded microchannel. Embodiments of the method for forming microfluidic devices integrating ridge waveguides with hollow microchannels having surface access points for fluid delivery, and for forming photonic crystals, are disclosed together with corresponding device embodiments.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 29, 2005
    Inventors: Patrick Dumais, Chris Ledderhof, Claire Callender, Chantal Blanchetiere, Julian Noad, Glendon Lovell
  • Publication number: 20050288483
    Abstract: The invention relates to compounds of formula I: x+y+z=1 and x=0 to 1, y=0 to 1, z=0 to 1 and R is CH3 or CF3 and R1 and R2 each represent H or a functional group. These compounds show promise in films and as optical waveguide materials as well as bimodal interference coupler and arrayed waveguide grating demultiplexer materials.
    Type: Application
    Filed: May 19, 2005
    Publication date: December 29, 2005
    Inventors: Jianfu Ding, Michael Day, Tyler Norsten, Yinghua Qi, Claire Callender, Jia Jiang