Patents by Inventor Claire Simonnet

Claire Simonnet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7892836
    Abstract: The capillary gun for delivery of ballistic particles to a target includes an inner capillary tube disposed concentrically within an outer capillary tube with the input end of the inner tube connected to a channel through which a continuous flow of high speed helium gas carrying ballistic particles is introduced. The outer capillary tube, which is connected to a vacuum source, has an outlet end that extends slightly beyond the end of the inner tube. A cap placed over the output end of the outer tube has an opening at its center through which the particles exit the device. The vacuum source applies continuous suction to the space between the outer tube and the inner tube, drawing the gas from the output end of the inner tube while the inertia of the accelerated particles causes them to continue in the axial direction through the exit opening for delivery to the target. Multiple particle injectors provide for the concurrent injection of different materials without disruption of the gas flow.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: February 22, 2011
    Assignee: The Regents of the University of California
    Inventors: Alexander Groisman, Claire Simonnet, Dmitry Rinberg
  • Publication number: 20080206870
    Abstract: The capillary gun for delivery of ballistic particles to a target includes an inner capillary tube disposed concentrically within an outer capillary tube with the input end of the inner tube connected to a channel through which a continuous flow of high speed helium gas carrying ballistic particles is introduced. The outer capillary tube, which is connected to a vacuum source, has an outlet end that extends slightly beyond the end of the inner tube. A cap placed over the output end of the outer tube has an opening at its center through which the particles exit the device. The vacuum source applies continuous suction to the space between the outer tube and the inner tube, drawing the gas from the output end of the inner tube while the inertia of the accelerated particles causes them to continue in the axial direction through the exit opening for delivery to the target. Multiple particle injectors provide for the concurrent injection of different materials without disruption of the gas flow.
    Type: Application
    Filed: February 13, 2006
    Publication date: August 28, 2008
    Inventors: Alexander Groisman, Claire Simonnet, Dmitry Rinberg