Patents by Inventor Clara Rivero

Clara Rivero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11198637
    Abstract: Gradient refractive index (GRIN) materials can include multi-phase composites having substances with differing refractive indices disposed non-uniformly within one another. Particular glass composites having a gradient index of refraction can include: an amorphous phase, and a phase-separated region disposed non-uniformly within the amorphous phase. The glass composites include a mixture containing: GeZ2 and A2Z3 in a combined molar ratio of about 60% to about 95%, and CsX and PbZ in a combined molar ratio of about 5% to about 40%, where A is As, Sb or Ga, X is Cl, Br or I, and Z is S or Se. When A is As, the glass composites include PbZ in a molar ratio of about 15% or less. The amorphous phase and the phase-separated region have refractive indices that differ from one another. More particularly, A is Ga or As, X is Cl, and Z is Se.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: December 14, 2021
    Assignees: Lockheed Martin Corporation, University of Central Florida Research Foundation, Inc.
    Inventors: Clara Rivero Baleine, Kathleen Richardson, Charmayne Smith
  • Patent number: 10437083
    Abstract: A mask array apparatus includes a monolithic structure that includes a substrate layer transmissive for at least a portion of an infrared wavelength band and an array of individually addressed pixel structures. Each pixel structure is in stacked relation above or below the substrate layer, and includes at least one micro-plate heating element layer, circuitry, and at least one phase change material (PCM) element. The heating element layer is transmissive for the wavelength band, and has switchable on and off states configured to produce temperature changes. The circuitry is configured to individually address the heating element layer, separately from heating element layers in other pixel structures, to switch the heating element layer between the on and off states. The PCM is in stacked relation above or below the heating element layer and configured to change transmissive states in the wavelength band in response to the temperature changes.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: October 8, 2019
    Assignees: Lockheed Martin Corporation, The Penn State Research Foundation
    Inventors: Clara Rivero Baleine, Theresa S. Mayer, Xiaoming Liu, Christina H. Drake
  • Publication number: 20180339934
    Abstract: Gradient refractive index (GRIN) materials can include multi-phase composites having substances with differing refractive indices disposed non-uniformly within one another. Particular glass composites having a gradient index of refraction can include: an amorphous phase, and a phase-separated region disposed non-uniformly within the amorphous phase. The glass composites include a mixture containing: GeZ2 and A2Z3 in a combined molar ratio of about 60% to about 95%, and CsX and PbZ in a combined molar ratio of about 5% to about 40%, where A is As, Sb or Ga, X is Cl, Br or I, and Z is S or Se. When A is As, the glass composites include PbZ in a molar ratio of about 15% or less. The amorphous phase and the phase-separated region have refractive indices that differ from one another. More particularly, A is Ga or As, X is Cl, and Z is Se.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 29, 2018
    Inventors: Clara Rivero BALEINE, Kathleen RICHARDSON, Charmayne SMITH
  • Patent number: 10132965
    Abstract: A refractive index device and method of making it include obtaining a glass structure comprising a plurality of nucleation sites. The glass structure is formed from a glass composition that comprises a first chemical component and a second chemical component. A crystal of the second chemical component has a different second refractive index from a first refractive index of the first chemical component. Each nucleation site defines where a crystal of the second chemical component can be grown. The method includes causing crystals of the second chemical component to grow in situ at a set of the plurality of nucleation sites in order to produce a spatial gradient of a refractive index in the glass structure.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: November 20, 2018
    Assignees: Lockheed Martin Corporation, The Penn State Research Foundation, Clemson University Research Foundation
    Inventors: Clara Rivero Baleine, Theresa S. Mayer, Jonathan David Musgraves, Kathleen Richardson, Peter Wachtel
  • Patent number: 9969647
    Abstract: Gradient refractive index (GRIN) materials can include multi-phase composites having substances with differing refractive indices disposed non-uniformly within one another. Particular glass composites having a gradient index of refraction can include: an amorphous phase, and a phase-separated region disposed non-uniformly within the amorphous phase. The glass composites include a mixture containing: GeZ2 and A2Z3 in a combined molar ratio of about 60% to about 95%, and CsX and PbZ in a combined molar ratio of about 5% to about 40%, where A is As, Sb or Ga, X is Cl, Br or I, and Z is S or Se. When A is As, the glass composites include PbZ in a molar ratio of about 15% or less. The amorphous phase and the phase-separated region have refractive indices that differ from one another. More particularly, A is Ga or As, X is Cl, and Z is Se.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 15, 2018
    Assignees: LOCKHEED MARTIN ENERGY, LLC, UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Clara Rivero Baleine, Kathleen Richardson, Charmayne Smith
  • Patent number: 9945917
    Abstract: A method and system for enhanced NQR or GPR include a metamaterial antenna configured to both transmit and receive a magnetic field focused at a near-field distance separated from the antenna at a corresponding antenna frequency corresponding to a nuclear quadrupole resonance frequency of an atom in a target material.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: April 17, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Christina Hartsell Drake, Clara Rivero Baleine, Nelson Ch Poon
  • Patent number: 9908808
    Abstract: Ternary chalcogenide glass materials containing germanium can display enhanced properties compared to corresponding binary chalcogenide glass materials lacking germanium. For instance, ternary chalcogenide glass materials containing germanium, arsenic and selenium can exhibit improved Vickers micro-hardness values and other enhanced mechanical properties while still maintaining small changes in refractive index as function of temperature. Such ternary glass materials can have a formula of (AsySez)[(100-x)·0.01]Gex, in which x ranges between about 1 and 5, y ranges between about 30 and 40, z ranges between about 60 and 70, and y+z=100. Methods for producing the ternary glass materials can include blending arsenic, selenium, and germanium as a melt, and cooling the melt to form the ternary glass material.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: March 6, 2018
    Assignees: Lockheed Martin Corporation, University of Central Florida Research Foundation, Inc.
    Inventors: Clara Rivero Baleine, Benn H. Gleason, Kathleen A. Richardson, Jeffrey Linn Ruckman
  • Publication number: 20180050955
    Abstract: Ternary chalcogenide glass materials containing germanium can display enhanced properties compared to corresponding binary chalcogenide glass materials lacking germanium. For instance, ternary chalcogenide glass materials containing germanium, arsenic and selenium can exhibit improved Vickers micro-hardness values and other enhanced mechanical properties while still maintaining small changes in refractive index as function of temperature. Such ternary glass materials can have a formula of (AsySez)[(100?x)·0.01]Gex, in which x ranges between about 1 and 5, y ranges between about 30 and 40, z ranges between about 60 and 70, and y+z=100. Methods for producing the ternary glass materials can include blending arsenic, selenium, and germanium as a melt, and cooling the melt to form the ternary glass material.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: Clara Rivero BALEINE, Benn H. GLEASON, Kathleen A. RICHARDSON, Jeffrey Linn RUCKMAN
  • Publication number: 20170334768
    Abstract: Gradient refractive index (GRIN) materials can include multi-phase composites having substances with differing refractive indices disposed non-uniformly within one another. Particular glass composites having a gradient index of refraction can include: an amorphous phase, and a phase-separated region disposed non-uniformly within the amorphous phase. The glass composites include a mixture containing: GeZ2 and A2Z3 in a combined molar ratio of about 60% to about 95%, and CsX and PbZ in a combined molar ratio of about 5% to about 40%, where A is As, Sb or Ga, X is Cl, Br or I, and Z is S or Se. When A is As, the glass composites include PbZ in a molar ratio of about 15% or less. The amorphous phase and the phase-separated region have refractive indices that differ from one another. More particularly, A is Ga or As, X is Cl, and Z is Se.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 23, 2017
    Inventors: Clara Rivero BALEINE, Kathleen RICHARDSON, Charmayne SMITH
  • Patent number: 9800803
    Abstract: An optical system that includes a reconfigurable phase-change material (PCM) layer that includes a plurality of individually controllable pixel areas. Each individually controllable pixel area is variable between a first refractive index and a second refractive index. The PCM layer is configured to pass radiation incident on the PCM layer in accordance with a first mask pattern through the PCM layer in a downstream direction. A PCM controller is configured to control the plurality of individually controllable pixel areas to have respective refractive indices in accordance with the first mask pattern.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 24, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: Clara Rivero Baleine, Robert Muise
  • Publication number: 20160238746
    Abstract: A refractive index device and method of making it include obtaining a glass structure comprising a plurality of nucleation sites. The glass structure is formed from a glass composition that comprises a first chemical component and a second chemical component. A crystal of the second chemical component has a different second refractive index from a first refractive index of the first chemical component. Each nucleation site defines where a crystal of the second chemical component can be grown. The method includes causing crystals of the second chemical component to grow in situ at a set of the plurality of nucleation sites in order to produce a spatial gradient of a refractive index in the glass structure.
    Type: Application
    Filed: April 22, 2016
    Publication date: August 18, 2016
    Inventors: Clara Rivero Baleine, Theresa S. Mayer, Jonathan David Musgraves, Kathleen Richardson, Peter Wachtel
  • Patent number: 9340446
    Abstract: A refractive index device and method of making it include obtaining a glass structure comprising a plurality of nucleation sites. The glass structure is formed from a glass composition that comprises a first chemical component and a second chemical component. A crystal of the second chemical component has a different second refractive index from a first refractive index of the first chemical component. Each nucleation site defines where a crystal of the second chemical component can be grown. The method includes causing crystals of the second chemical component to grow in situ at a set of the plurality of nucleation sites in order to produce a spatial gradient of a refractive index in the glass structure.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: May 17, 2016
    Assignees: Lockheed Martin Corporation, The Penn State Research Foundation, Clemson University Research Foundation
    Inventors: Clara Rivero Baleine, Theresa S. Mayer, Jonathan David Musgraves, Kathleen Richardson, Peter Wachtel
  • Publication number: 20160088242
    Abstract: An optical system that includes a reconfigurable phase-change material (PCM) layer that includes a plurality of individually controllable pixel areas. Each individually controllable pixel area is variable between a first refractive index and a second refractive index. The PCM layer is configured to pass radiation incident on the PCM layer in accordance with a first mask pattern through the PCM layer in a downstream direction. A PCM controller is configured to control the plurality of individually controllable pixel areas to have respective refractive indices in accordance with the first mask pattern.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 24, 2016
    Inventors: Clara Rivero Baleine, Robert Muise
  • Publication number: 20150260812
    Abstract: A method and system for enhanced NQR or GPR include a metamaterial antenna configured to both transmit and receive a magnetic field focused at a near-field distance separated from the antenna at a corresponding antenna frequency corresponding to a nuclear quadrupole resonance frequency of an atom in a target material.
    Type: Application
    Filed: January 8, 2014
    Publication date: September 17, 2015
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Christina Hartsell Drake, Clara Rivero Baleine, Nelson Ch Poon
  • Patent number: 8361593
    Abstract: A plasmonic coating for reflecting electromagnetic energy is disclosed. The coating includes a plurality of layers, at least one of which is a dielectric layer; and a patterned dielectric layer in structural communication with the plurality of layers and having a pattern configured to plasmonically reflect electromagnetic energy incident thereon.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: January 29, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Clara A. Rivero
  • Patent number: 8329299
    Abstract: A method for depositing sol-gel derived coatings on substrates to form coated substrates includes the steps of providing a first solution including at least one sol precursor and at least one solvent. A water comprising solution is added to the first solution to form a sol-gel. The sol-gel is deposited on a substrate. The sol-gel layer on the substrate is dried/cured at a temperature ?100° C. for at least 10 minutes to form a solid layer, wherein the solid layer has a thickness from 50 nm to 110 nm. The depositing and curing steps are repeated at least once until combined thickness of the solid layers forms a coating of a predetermined thickness. The resulting solid layers are low water content layers that can be evidenced by transmission measurements. The coated substrate can be an IR transmissive substrate having a recrystallization temperature <130° C.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 11, 2012
    Assignees: University of Central Florida Research Foundation, Inc., Lockheed Martin Missiles and Fire Control
    Inventors: Sudipta Seal, Erik R. Brinley, Suresh Babu Krishna Moorthy, Abhilash Vincent, David Reid, Clara Rivero
  • Publication number: 20090104406
    Abstract: A plasmonic coating for reflecting electromagnetic energy is disclosed. The coating includes a plurality of layers, at least one of which is a dielectric layer; and a patterned dielectric layer in structural communication with the plurality of layers and having a pattern configured to plasmonically reflect electromagnetic energy incident thereon.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Applicant: Lockheed Martin Corporation
    Inventor: Clara A. Rivero
  • Publication number: 20080311390
    Abstract: A method for depositing sol-gel derived coatings on substrates to form coated substrates includes the steps of providing a first solution including at least one sol precursor and at least one solvent. A water comprising solution is added to the first solution to form a sol-gel. The sol-gel is deposited on a substrate. The sol-gel layer on the substrate is dried/cured at a temperature ?100° C. for at least 10 minutes to form a solid layer, wherein the solid layer has a thickness from 50 nm to 110 nm. The depositing and curing steps are repeated at least once until combined thickness of the solid layers forms a coating of a predetermined thickness. The resulting solid layers are low water content layers that can be evidenced by transmission measurements. The coated substrate can be an IR transmissive substrate having a recrystallization temperature <130° C.
    Type: Application
    Filed: March 31, 2008
    Publication date: December 18, 2008
    Applicants: University of Central Florida, Lockheed Martin Corporation
    Inventors: Sudipta Seal, Erik R. Brinley, Suresh Babu Krishna Moorthy, Abhilash Vincent, David Reid, Clara Rivero