Patents by Inventor Clarence Lavere Gordon, III
Clarence Lavere Gordon, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10345267Abstract: A method of detecting material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data comprises a number of ultrasonic A-scans. The data is processed to identify a plurality of frequency measurements for each of the number of ultrasonic A-scans. A frequency image is displayed using the plurality of frequency measurements. The material changes are represented in the frequency image.Type: GrantFiled: March 15, 2016Date of Patent: July 9, 2019Assignee: The Boeing CompanyInventors: Matthew O'Donnell, Ivan Pelivanov, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, William P. Motzer, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
-
Patent number: 10126273Abstract: A method of detecting inconsistencies in a structure is presented. A pulsed laser beam is directed towards the structure. A plurality of types of ultrasonic signals is formed in the structure when radiation of the pulsed laser beam is absorbed by the structure. The plurality of types of ultrasonic signals is detected to form data.Type: GrantFiled: February 29, 2016Date of Patent: November 13, 2018Assignee: The Boeing CompanyInventors: Ivan Pelivanov, William P. Motzer, Matthew O'Donnell, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
-
Publication number: 20170248551Abstract: A method of detecting inconsistencies in a structure is presented. A pulsed laser beam is directed towards the structure. A plurality of types of ultrasonic signals is formed in the structure when radiation of the pulsed laser beam is absorbed by the structure. The plurality of types of ultrasonic signals is detected to form data.Type: ApplicationFiled: February 29, 2016Publication date: August 31, 2017Inventors: Ivan Pelivanov, William P. Motzer, Matthew O'Donnell, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
-
Publication number: 20170176393Abstract: A method of detecting material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data comprises a number of ultrasonic A-scans. The data is processed to identify a plurality of frequency measurements for each of the number of ultrasonic A-scans. A frequency image is displayed using the plurality of frequency measurements. The material changes are represented in the frequency image.Type: ApplicationFiled: March 15, 2016Publication date: June 22, 2017Inventors: Matthew O'Donnell, Ivan Pelivanov, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, William P. Motzer, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
-
Patent number: 9625423Abstract: A method and apparatus for testing a composite structure. A pulsed laser beam having a number of properties is generated. Each of the number of properties is within a selected range. The pulsed laser beam generated by the generation laser system is directed towards a composite structure comprised of a number of composite materials. A number of ultrasonic waves are formed in the composite structure when the pulsed laser beam contacts the composite structure without causing any undesired inconsistencies in the composite structure outside of selected tolerances.Type: GrantFiled: October 30, 2012Date of Patent: April 18, 2017Assignee: THE BOEING COMPANYInventors: Richard H. Bossi, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, Alan Frank Stewart, William P. Motzer, Clarence Lavere Gordon, III, Matthew O'Donnell, Jinjun Xia, Ivan Pelivanov, Chen-wei Wei
-
Patent number: 9404898Abstract: A method and apparatus for inspecting a structure. In one illustrative embodiment, an apparatus comprises a laser system located outside of an area that includes a region of a structure to be inspected, a mobile platform located within the area to be inspected, and a projection system associated with the mobile platform. The laser system is configured to generate a laser beam. The projection system receives the laser beam and projects the laser beam onto a surface of the region of the structure. The laser beam causes a number of ultrasonic waves to form within the structure.Type: GrantFiled: March 15, 2013Date of Patent: August 2, 2016Assignee: THE BOEING COMPANYInventors: Gary Ernest Georgeson, Alan Frank Stewart, William P. Motzer, Steven Kenneth Brady, Richard H. Bossi, Clarence Lavere Gordon, III
-
Patent number: 8692201Abstract: A moisture detection system for characterizing moisture on a sample includes a generator adapted to emit an incident beam of radiation from the terahertz spectrum of frequency onto the sample; a detector adapted to receive a reflected beam of radiation from the sample and measure radiation in the reflected beam; and a controller adapted to correlate the radiation in the reflected beam with an amount of moisture on the sample.Type: GrantFiled: January 26, 2011Date of Patent: April 8, 2014Assignee: The Boeing CompanyInventors: Clarence Lavere Gordon, III, Richard H. Bossi
-
Patent number: 8571175Abstract: A system for determining ionization susceptibility including a sample, an x-ray generator configured to generate a pulsed x-ray beam, and focusing optics disposed between the sample and the x-ray generator, the focusing optics being configured to focus the pulsed x-ray beam into a spot on the sample.Type: GrantFiled: November 30, 2009Date of Patent: October 29, 2013Assignee: The Boeing CompanyInventors: Mark Joseph Clemen, Jr., Clarence Lavere Gordon, III, Jerry Lee Wert
-
Patent number: 8054939Abstract: A method and apparatus for measuring a structure. An x-ray system and the structure are positioned relative to each other. The x-ray system comprises a gas source configured to provide a gas, a laser system configured to emit a laser beam, a steering system, and a detector. The steering system is configured to direct a first portion of the laser beam into the gas such that an electron beam is generated by the laser beam interacting with the gas and is configured to direct a second portion of the laser beam into the electron beam such that a collimated x-ray beam is formed. The detector is configured to detect the collimated x-ray beam. The collimated x-ray beam is emitted with the structure positioned relative to the x-ray system.Type: GrantFiled: July 30, 2009Date of Patent: November 8, 2011Assignee: The Boeing CompanyInventors: Clarence Lavere Gordon, III, Richard H. Bossi, John L. Adamski
-
Publication number: 20110129053Abstract: A system for determining ionization susceptibility including a sample, an x-ray generator configured to generate a pulsed x-ray beam, and focusing optics disposed between the sample and the x-ray generator, the focusing optics being configured to focus the pulsed x-ray beam into a spot on the sample.Type: ApplicationFiled: November 30, 2009Publication date: June 2, 2011Applicant: The Boeing CompanyInventors: Mark Joseph Clemen, JR., Clarence Lavere Gordon, III, Jerry Lee Wert
-
Publication number: 20110026675Abstract: A method and apparatus for measuring a structure. An x-ray system and the structure are positioned relative to each other. The x-ray system comprises a gas source configured to provide a gas, a laser system configured to emit a laser beam, a steering system, and a detector. The steering system is configured to direct a first portion of the laser beam into the gas such that an electron beam is generated by the laser beam interacting with the gas and is configured to direct a second portion of the laser beam into the electron beam such that a collimated x-ray beam is formed. The detector is configured to detect the collimated x-ray beam. The collimated x-ray beam is emitted with the structure positioned relative to the x-ray system.Type: ApplicationFiled: July 30, 2009Publication date: February 3, 2011Applicant: The Boeing CompanyInventors: Clarence Lavere Gordon, III, Richard H. Bossi, John L. Adamski
-
Patent number: 7852988Abstract: An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly.Type: GrantFiled: July 31, 2008Date of Patent: December 14, 2010Assignee: General Electric CompanyInventors: Manoharan Venugopal, Anandraj Sengupta, Mandyam Rangayan Sridhar, Maheshwara Murthy, Rammohan Rao Kalluri, Thangavelu Asokan, Ramasamy Anbarasu, Pramod Kumar Pandey, Clarence Lavere Gordon, III, Mark Alan Frontera, Sunil Srinivasa Murthy, Debasish Mishra, Manoj Kumar Koyithitta Meethal, Munishwar Ahuja, Hombe Gowda
-
Patent number: 7745797Abstract: A digital radiography imaging system having a digital x-ray detector that is easy to manufacture and produces high quality images with no artifacts. The digital x-ray detector including a front cover, a scintillator screen member, a light imager panel member having a surface in direct contact with an adjoining surface of the scintillator screen member, a compressible member positioned between the front cover and the scintillator screen member to apply pressure to the scintillator screen member and the adjoining surface between the scintillator screen member and the light imager panel member, electronic circuitry mounted on at least one printed circuit board and coupled to the light imager panel, a back cover, and a plurality of fasteners for fastening the front cover to the back cover.Type: GrantFiled: March 3, 2009Date of Patent: June 29, 2010Assignee: General Electric Co.Inventors: James Zhengshe Liu, Chen Zhang, Habib Vafi, Zhimin Sun, Kenneth Scott Kump, Clifford Bueno, Clarence Lavere Gordon, III
-
Patent number: 7706502Abstract: A cargo container inspection radiation detector apparatus is disclosed. The apparatus includes a support, and a plurality of area radiation detectors disposed upon the support arranged corresponding to a height of the cargo container, each area radiation detector comprising an active area defined by a matrix of pixels.Type: GrantFiled: May 31, 2007Date of Patent: April 27, 2010Assignee: Morpho Detection, Inc.Inventors: Clifford Bueno, Joseph Bendahan, Elizabeth Lokenberg Dixon, Clarence Lavere Gordon, III, William Robert Ross, Donald Earl Castleberry, Forrest Frank Hopkins, Douglas Albagli
-
Publication number: 20100027753Abstract: An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly.Type: ApplicationFiled: July 31, 2008Publication date: February 4, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Manoharan Venugpal, Anandraj Sengupta, Mandyam Rangayam Sridhar, Maheshwara Murthy, Rammohan Rao Kalluri, Thangavelu Asokan, Ramasamy Anbarusu, Pramod Kumar Pandey, Clarence Lavere Gordon, III, Mark Alan Frontera, Sunil Srinivasa Murthy, Debasish Mishra, Manoj Kumar Koyithitta Meethal, Munishwar Ahuja, Hombe Gowda
-
Publication number: 20080298545Abstract: A cargo container inspection radiation detector apparatus is disclosed. The apparatus includes a support, and a plurality of area radiation detectors disposed upon the support arranged corresponding to a height of the cargo container, each area radiation detector comprising an active area defined by a matrix of pixels.Type: ApplicationFiled: May 31, 2007Publication date: December 4, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: Clifford Bueno, Joseph Bendahan, Elizabeth Lokenberg Dixon, Clarence Lavere Gordon, III, William Robert Ross, Donald Earl Castleberry, Forrest Frank Hopkins, Douglas Albagli
-
Publication number: 20080298546Abstract: A method of improving a signal to noise ratio of an image data set of a cargo container is disclosed. The method includes transmitting a radiation beam toward the cargo container, detecting the transmitted radiation beam via a plurality of area radiation detectors, each area radiation detector comprising an active area defined by a matrix of pixels, thereby defining enhanced radiation data, processing the enhanced radiation data and reconstructing the image data set representative of contents of the cargo container, combining image attributes of the image data set to improve the signal to noise ratio, thereby defining an enhanced image data set, and displaying on a display the enhanced image data set comprising an improved signal to noise ratio.Type: ApplicationFiled: May 31, 2007Publication date: December 4, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: Clifford Bueno, Joseph Bendahan, Elizabeth Lokenberg Dixon, Clarence Lavere Gordon, III, William Robert Ross, Donald Earl Castleberry, Forrest Frank Hopkins, Douglas Albagli, Robert August Kaucic, Jr., William Macomber Leue
-
Patent number: 7214947Abstract: A detector assembly including a radiation conversion layer directly coupled to a pixel array is provided. The radiation conversion layer is adapted to receive radiation passing through an object. The pixel array is adapted for receiving one of a plurality of signals representative of the radiation passing through the object or the corresponding optical signals from an optional intermediate light production layer and further configured for generating a corresponding image of the object.Type: GrantFiled: March 25, 2005Date of Patent: May 8, 2007Assignee: General Electric CompanyInventors: Clifford Bueno, Forrest Frank Hopkins, Scott Stephen Zelakiewicz, Clarence Lavere Gordon, III