Patents by Inventor Clark J. Wagner

Clark J. Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9330877
    Abstract: Logic devices are provided in multiple sub-collector and sub-emitter microplasma devices formed in thin and flexible, or inflexible, semiconductor materials. Logic operations are provided with one of a plurality of microplasmas forming sub-collectors with a common emitter, or a common collector plasma with a plurality of sub-emitter regions in a solid state semi-conductor pn-junction, and generating a logic output from an electrode, based upon electrode inputs to two other electrodes.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: May 3, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Patent number: 9263558
    Abstract: A hybrid plasma semiconductor device has a thin and flexible semiconductor base layer. An emitter region is diffused into the base layer forming a pn-junction. An insulator layer is upon one side the base layer and emitter region. Base and emitter electrodes are isolated from each other by the insulator layer and electrically contact the base layer and emitter region through the insulator layer. A thin and flexible collector layer is upon an opposite side of the base layer. A microcavity is formed in the collector layer and is aligned with the emitter region. Collector electrodes are arranged to sustain a microplasma within the microcavity with application of voltage to the collector electrodes. A depth of the emitter region and a thickness of the base layer are set to define a predetermined thin portion of the base layer as a base region between the emitter region and the microcavity. Microplasma generated in the microcavity serves as a collector.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: February 16, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Patent number: 9184341
    Abstract: Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). A preferred device is a hybrid plasma semiconductor device having base, emitting and microcavity collector regions formed on a single side of a device layer. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: November 10, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Publication number: 20150294831
    Abstract: Logic devices are provided in multiple sub-collector and sub-emitter microplasma devices formed in thin and flexible, or inflexible, semiconductor materials. Logic operations are provided with one of a plurality of microplasmas forming sub-collectors with a common emitter, or a common collector plasma with a plurality of sub-emitter regions in a solid state semi-conductor pn-junction, and generating a logic output from an electrode, based upon electrode inputs to two other electrodes.
    Type: Application
    Filed: June 1, 2015
    Publication date: October 15, 2015
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Publication number: 20140339677
    Abstract: A hybrid plasma semiconductor device has a thin and flexible semiconductor base layer. An emitter region is diffused into the base layer forming a pn-junction. An insulator layer is upon one side the base layer and emitter region. Base and emitter electrodes are isolated from each other by the insulator layer and electrically contact the base layer and emitter region through the insulator layer. A thin and flexible collector layer is upon an opposite side of the base layer. A microcavity is formed in the collector layer and is aligned with the emitter region. Collector electrodes are arranged to sustain a microplasma within the microcavity with application of voltage to the collector electrodes. A depth of the emitter region and a thickness of the base layer are set to define a predetermined thin portion of the base layer as a base region between the emitter region and the microcavity. Microplasma generated in the microcavity serves as a collector.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Publication number: 20140319654
    Abstract: Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). A preferred device is a hybrid plasma semiconductor device having base, emitting and microcavity collector regions formed on a single side of a device layer. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: J. Gary Eden, Paul A. Tchertchian, Clark J. Wagner, Dane J. Sievers, Thomas J. Houlahan, Benben Li
  • Patent number: 8816435
    Abstract: Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 26, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul A. Tchertchian, Thomas J. Houlahan, Dane J. Sievers, Benben Li, Clark J. Wagner
  • Patent number: 8674461
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: March 18, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Publication number: 20130299909
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Patent number: 8525276
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 3, 2013
    Assignee: The Board of Trustees of the University of California
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Patent number: 8492744
    Abstract: Preferred embodiments of the invention provide semiconducting microcavity plasma devices. Preferred embodiments of the invention are microcavity plasma devices having at least two pn junctions, separated by a microcavity or microchannel and powered by alternate half-cycles of a time-varying voltage waveform. Alternate embodiments have a single pn junction. Microplasma is produced throughout the cavity between single or multiple pn junctions and a dielectric layer isolates the microplasma from the single or multiple pn junctions. Additional preferred embodiments are devices in which the spatial extent of the plasma itself or the n or p regions associated with a pn junction are altered by a third (control) electrode.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 23, 2013
    Assignees: The Board of Trustees of the University of Illinois, Acumen Scientific
    Inventors: J. Gary Eden, Paul Tchertchian, Clark J. Wagner, Steve Solomon, Robert Ginn
  • Patent number: 8362699
    Abstract: Embodiments of the invention provide for large arrays of microcavity plasma devices that can be made inexpensively, and can produce large area but thin displays or lighting sources Interwoven metal wire mesh, such as interwoven Al mesh, consists of two sets of wires which are interwoven in such a way that the two wire sets cross each other, typically at ?ght angles (90 degrees) although other patterns are also available Fabrication is accomplished with a simple and inexpensive wet chemical etching process The wires in each set are spaced from one another such that the finished mesh forms an array of openings that can be, for example, square, rectangular or diamond-shaped The size of the openings or microcavities is a function of the diameter of the wires in the mesh and the spacing between the wires in the mesh used to form the array of microcavity plasma devices.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 29, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Andrew J. Price, Jason D. Readle, Clark J. Wagner
  • Patent number: 8221179
    Abstract: The cavity 102 defines an empty volume formed in the insulator 108 has its walls defined by the insulator 108 and may extend through either (or both) the first electrode 106 or the second electrode 104, in which case the first electrode and/or second electrode also define the walls of the cavity 102. The cavity 102 is preferably cylindrical and has a diameter of 0.1 ?m-1 mm. More preferably, the diameter ranges from 0.1 ?m-500 ?m, 1 ?m-100 ?m, or 100 ?m-500 ?m. The cavity 102 will be filled with a gas that contacts the cavity walls, fills the entire cavity 102 and is selected for its breakdown voltage or light emission properties at breakdown. Light is produced when the voltage difference between the first electrode 106 and the second electrode 104 creates an electric field sufficiently large to electrically break down the gas (nominally about 104 V-cm). This light escapes from the microcavity 102 through at least one end of the cavity 102.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 17, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Clark J. Wagner
  • Publication number: 20120104554
    Abstract: Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 3, 2012
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul A. Tchertchian, Thomas J. Houlahan, Dane J. Sievers, Benben Li, Clark J. Wagner
  • Publication number: 20110260609
    Abstract: Embodiments of the invention provide for large arrays of microcavity plasma devices that can be made inexpensively, and can produce large area but thin displays or lighting sources Interwoven metal wire mesh, such as interwoven Al mesh, consists of two sets of wires which are interwoven in such a way that the two wire sets cross each other, typically at ?ght angles (90 degrees) although other patterns are also available Fabrication is accomplished with a simple and inexpensive wet chemical etching process The wires in each set are spaced from one another such that the finished mesh forms an array of openings that can be, for example, square, rectangular or diamond-shaped The size of the openings or microcavities is a function of the diameter of the wires in the mesh and the spacing between the wires in the mesh used to form the array of microcavity plasma devices.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 27, 2011
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Andrew J. Price, Jason D. Readle, Clark J. Wagner
  • Publication number: 20110140073
    Abstract: Preferred embodiments of the invention provide semiconducting microcavity plasma devices. Preferred embodiments of the invention are microcavity plasma devices having at least two pn junctions, separated by a microcavity or microchannel and powered by alternate half-cycles of a time-varying voltage waveform. Alternate embodiments have a single pn junction. Microplasma is produced throughout the cavity between single or multiple pn junctions and a dielectric layer isolates the microplasma from the single or multiple pn junctions. Additional preferred embodiments are devices in which the spatial extent of the plasma itself or the n or p regions associated with a pn junction are altered by a third (control) electrode.
    Type: Application
    Filed: October 29, 2010
    Publication date: June 16, 2011
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Paul Tchertchian, Clark J. Wagner, Steve Solomon, Robert Ginn
  • Publication number: 20110037102
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Application
    Filed: June 17, 2010
    Publication date: February 17, 2011
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Patent number: 7804877
    Abstract: The present invention provides in one of the embodiments for either a continuous wave (cw) or pulsed alkali laser having an optical cavity resonant at a wavelength defined by an atomic transition, a van der Waals complex within the optical cavity, the van der Waals complex is formed from an alkali vapor joined with a polarizable gas, and a pump laser for optically pumping the van der Waals complex outside of the Lorentzian spectral wings wherein the van der Waals complex is excited to form an exciplex that dissociates forming an excited alkali vapor, generating laser emission output at the wavelength of the lasing transition.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: September 28, 2010
    Assignees: CU Aerospace, LLC, The Board of the University of Illinois
    Inventors: Joseph T. Verdeyen, James Gary Eden, David L. Carroll, Jason D. Readle, Clark J. Wagner
  • Patent number: 7638937
    Abstract: Roll to roll fabrication methods of the invention enable low cost mass production of microdischarge devices and arrays. A preferred embodiment method of fabricating a discharge device includes providing a dielectric layer sheet, a first electrode, and a second electrode sheet. A cavity is provided through at least a portion of the dielectric layer sheet. At least the dielectric layer sheet and second electrode sheet are rolled together. Another preferred embodiment method of fabrication a discharge device includes method of fabricating a discharge device includes providing a dielectric layer sheet and a cavity through at least a portion of the dielectric layer sheet. A first electrode is disposed as a film of conducting material on the dielectric layer sheet around a rim of the cavity. A second electrode sheet is provided. The dielectric layer sheet is rolled together with first electrode and second electrode sheets.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 29, 2009
    Assignee: Board of Trustees of the University Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Clark J. Wagner
  • Publication number: 20080285614
    Abstract: The present invention provides in one of the embodiments for either a continuous wave (cw) or pulsed alkali laser having an optical cavity resonant at a wavelength defined by an atomic transition, a van der Waals complex within the optical cavity, the van der Waals complex is formed from an alkali vapor joined with a polarizable gas, and a pump laser for optically pumping the van der Waals complex outside of the Lorentzian spectral wings wherein the van der Waals complex is excited to form an exciplex that dissociates forming an excited alkali vapor, generating laser emission output at the wavelength of the lasing transition.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 20, 2008
    Applicants: CU AEROSPACE, LLC, THE BOARD OF THE UNIVERSITY OF ILLINOIS
    Inventors: Joseph T. Verdeyen, James Gary Eden, David L. Carroll, Jason D. Readle, Clark J. Wagner