Patents by Inventor Claude C. Culross

Claude C. Culross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6136868
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide conversion reactions, especially a Fischer-Tropsch catalyst, use of the catalyst for conducting such reactions, especially Fischer-Tropsch reactions, and the composition produced by said process. In the preparation of the catalyst, a solution of a carbohydrate, or sugar, notably a monosaccharide or disaccharide, particularly sucrose, is employed to impregnate and disperse a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, or in a preferred embodiment both a compound or salt of rhenium and a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, onto a refractory inorganic oxide support, e.g., titania. The rhenium, when present only in small amount permits full and complete reduction of the catalytic metal, or metals, dispersed by the carbohydrate.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: October 24, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Charles H. Mauldin
  • Patent number: 6090859
    Abstract: Small particle size catalysts having an average particle size of less than 20 or 10 microns, which agglomerate when contacted with a hydrocarbon liquid, are easily dispersed in the hydrocarbon liquid by first forming a mixture comprising the catalyst particles and one or more non-acidic, liquid polar oxygenates, such as an alcohol, ketone, ester, ether or mixture thereof. The mixture is contacted with the hydrocarbon liquid in which the particles then readily disperse. This process is useful for adding fresh or regenerated small particle size catalyst to catalytic hydroprocessing process slurries, including a reactive Fischer-Tropsch hydrocarbon synthesis slurry. One to four carbon atom alcohols are preferred oxygenates for use with a Fischer-Tropsch slurry.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: July 18, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gregg J. Howsmon, Robert J. Wittenbrink, Claude C. Culross, Louis F. Burns
  • Patent number: 6090742
    Abstract: A process for the preparation of a catalyst which is highly active for the synthesis of hydrocarbons from mixtures of hydrogen and carbon monoxide. A silica or silica-containing support is treated with a solution containing both an Iron Group metal, or metals, and nitrous acid, nitric acid, or a nitro-containing organo, or nitro-containing hydrocarbyl compound, or compounds, sufficient to hydroxylate the surface thereof and increase the number of hydroxyl groups on the surface of the support such that the metal component will be highly dispersed, this increasing the activity of the catalyst in a hydrocarbon synthesis reaction as contrasted with that of a catalyst of similar composition, similarly prepared except that the support component of the catalyst was not contacted and simultaneously treated with both the Iron Group metal and the acid.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Exxon Research and Engineering Company
    Inventor: Claude C. Culross
  • Patent number: 5977192
    Abstract: Small particle size catalysts having an average particle size of less than 20 or 10 microns, which agglomerate when contacted with a hydrocarbon liquid, are easily dispersed in the hydrocarbon liquid by first forming a mixture comprising the catalyst particles and one or more non-acidic, liquid polar oxygenates, such as an alcohol, ketone, ester, ether or mixture thereof. The mixture is contacted with the hydrocarbon liquid in which the particles then readily disperse. This process is useful for adding fresh or regenerated small particle size catalyst to catalytic hydroprocessing process slurries, including a reactive Fischer-Tropsch hydrocarbon synthesis slurry. One to four carbon atom alcohols are preferred oxygenates for use with a Fischer-Tropsch slurry.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: November 2, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gregg J. Howsmon, Robert J. Wittenbrink, Claude C. Culross, Louis F. Burns
  • Patent number: 5928983
    Abstract: A process for the preparation of a novel highly active, highly selective catalyst useful for conducting carbon monoxide hydrogenation reactions, particularly Fischer-Tropsch reactions, the catalyst per se, and process for use of such catalyst in conducting carbon monoxide hydrogenation reactions, particularly Fischer-Tropsch synthesis reactions. The catalyst is prepared by contacting together, preferably by dispersing in a liquid, a preformed, particulate refractory inorganic oxide support, preferably a fumed silica support, compound or salt of a catalytic metal, or metals, i.e., a metal selected from Groups IB, IIB, VIIB or VIII of the Periodic Table, preferably cobalt, an oxidizable alcohol, oxidizable aldehyde, or oxidizable ketone promoter, suitably glyoxal, and an oxidant sufficient to react with the promoter and convert the metal, or metals, to an insoluble highly dispersed metal carboxylate which is deposited and supported on the support.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: July 27, 1999
    Assignee: Exxon Research and Engineering Co
    Inventor: Claude C. Culross
  • Patent number: 5856261
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide conversion reactions, especially a Fischer-Tropsch catalyst, use of the catalyst for conducting such reactions, especially Fischer-Tropsch reactions, and the composition produced by said process. In the preparation of the catalyst, a solution of a carbohydrate, or sugar, notably a monosaccharide or disaccharide, particularly sucrose, is employed to impregnate and disperse a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, or in a preferred embodiment both a compound or salt of rhenium and a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, onto a refractory inorganic oxide support, e.g., titania. The rhenium, when present only in small amount permits full and complete reduction of the catalytic metal, or metals, dispersed by the carbohydrate.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: January 5, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Charles H. Mauldin
  • Patent number: 5650371
    Abstract: A continuous impregnation process for the preparation of a heterogeneous catalyst.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: July 22, 1997
    Assignee: Exxon Research and Engineering Company
    Inventor: Claude C. Culross
  • Patent number: 5454934
    Abstract: A method for converting solid carbonaceous materials to liquid products. The solid carbonaceous material is first treated with a aqueous composition of a metal carbonate or bicarbonate. This results in the metal being atomically dispersed in the carbonaceous material. The treated solid carbonaceous material is then subjected to liquefaction conditions. The preferred metal is iron.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: October 3, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Stephen D. Reynolds, Claude C. Culross, Stephen D. LeViness, John W. Larsen
  • Patent number: 5378673
    Abstract: A process for the atomic dispersion of metals into support materials, preferably silica, alumina, and amorphous and zeolitic alumino-silicates. The support material is contacted with an aqueous composition of a metal carbonate, or bicarbonate. This results in the metal being atomically dispersed in the support material.
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: January 3, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Stephen D. Reynolds, Claude C. Culross
  • Patent number: 5338441
    Abstract: The present invention relates to a catalytic process for converting a solid carbonaceous material, such as coal, to a liquid product in the presence of hydrogen. More particularly, this invention relates to a coal liquefaction process wherein a mixture of coal, bottoms, solvent and a sulfiding agent is subjected to liquefaction conditions in the presence of a catalyst precursor. This catalyst or catalyst precursor is comprised of a thermally decomposable compound of Groups IIB, IVB, VB, VIB, VIIB, and VIII of the Periodic Table of the Elements such as molybdenum.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: August 16, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Steve C. LeViness, Steve J. Hsia, Michael Y. Wen, Stephen M. Davis, Claude C. Culross, Peter S. Maa
  • Patent number: 5336395
    Abstract: This invention is directed to a staged process for producing liquids from coal or similar carbonaceous feeds combining a pretreatment stage and a liquefaction stage. In the process, the feed is reacted with carbon monoxide and water at an elevated temperature and pressure. The so pretreated coal is sent to a liquefaction reactor, wherein the coal is reacted at a somewhat higher temperature in the presence of hydrogen and catalyst to produce valuable liquid fuels or feedstocks.
    Type: Grant
    Filed: March 29, 1993
    Date of Patent: August 9, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Joanne K. Pabst, William E. Winter, Jr., Stephen N. Vaughn, Claude C. Culross, Steve D. Reynolds
  • Patent number: 5151173
    Abstract: This invention is directed to a process for pretreating coal preliminary to a primary liquefaction or hydroconversion block. In the process, a coal feed, slurried in a solvent, is reacted with carbon monoxide in the presence of a chemical promoter at an elevated temperature and pressure. The promoter enhances the depolymerization and hydrogenation of the coal during pretreatment.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: September 29, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Stephen N. Vaughn, Michael Siskin, Alan Katritzky, Glen Brons, Steve N. Reynolds, Claude C. Culross, Dan R. Neskora
  • Patent number: 5110450
    Abstract: An improved process for the hydroconversion of coal, wherein coal is slurried in an organic solvent and subjected to pretreatment with carbon monoxide, followed by separation of a solvent-soluble phase comprising hydrocarbon material from the coal, and subsequently hydroconverting the extracted material in a hydroconversion reactor. The extracted material consists of a relatively hydrogen-rich material which is readily hydroconverted to valuable liquid products in high yield. The coal residue is relatively hydrogen deficient material which can be gasified to produce hydrogen and carbon monoxide for the hydroconversion and pretreatment stages, respectively.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: May 5, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Steve D. Reynolds
  • Patent number: 5074990
    Abstract: Disclosed is a fluid catalytic cracking process using a catalyst composite comprised of an alumina-on-silica material, an inorganic refractory oxide, and optionally a zeolite material. The alumina-on-silica material is comprised of silica particles with surface bound aluminum groups chemically bonded to the silica surface through surface oxygen atoms, which material is dispersed in a matrix of a refractory oxide.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: December 24, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Gordon F. Stuntz, William E. Winter
  • Patent number: 5071540
    Abstract: An improved process for the hydroconversion of coal comprising pretreating coal in an aqeuous carbon monoxide-containing environment, followed by extracting a soluble hydrocarbon material from the coal, and subsequently hydroconverting the extracted material in a hydroconversion reactor with a high catalyst loading to obtain a nearly finished product with low heteroatom levels. The extracted material consists of a relatively hydrogen-rich material which is readily converted to valuable liquid products in high yield. The residue from the extraction stage is relatively hydrogen deficient material which can be gasified to produce hydrogen and carbon monoxide for the hydroconversion and pretreatment stages, respectively.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: December 10, 1991
    Assignee: Exxon Research & Engineering Company
    Inventors: Claude C. Culross, Steve D. Reynolds
  • Patent number: 5070053
    Abstract: Disclosed is a FCC catalyst composite, and a method of making said composite comprised of an alumina-on-silica additive, an inorganic refractory oxide, and optionally a zeolite material.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: December 3, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Gordon F. Stuntz, William E. Winter, Jr.
  • Patent number: 5051389
    Abstract: A catalyst composition prepared by depositing a metal or metal compound onto a preformed carbon support and thereafter converting said metal or metal compounds to an oxide or sulfide having hydrogenation activity. The metal is selected from the group of metals consisting of Groups II-B, IV-B, IV-A, V-A, VI-A, VII-A and VIII-A metals of the Periodic Table of the Elements. The catalyst compositions are useful in hydroconversion and hydrotreating processes.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: September 24, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Lang, Claude C. Culross, Lonnie W. Vernon, William E. Winter
  • Patent number: 5026475
    Abstract: An improved process for the hydroconversion of coal comprising pretreating coal in an aqueous carbon monoxide-containing environment, followed by extracting a soluble hydrocarbon material from the coal, and subsequently hydroconverting the extracted material in a hydroconversion reactor. The extracted material consists of a relatively hydrogen-rich material which is readily converted to valuable liquid products in high yield. The residue from the extraction stage is relatively hydrogen deficient material which can be gasified to produce hydrogen and carbon monoxide for the hydroconversion and pretreatment stages, respectively.
    Type: Grant
    Filed: December 21, 1989
    Date of Patent: June 25, 1991
    Assignee: Exxon Research & Engineering Company
    Inventors: Gordon F. Stuntz, Claude C. Culross, Steve D. Reynolds
  • Patent number: 4681957
    Abstract: An improved process for preparing dihydrocarbyl substituted dithiocarbamates of molybdenum wherein an alkali metal hydroxide is reacted with a mixture of a dihydrocarbyl substituted amine and carbon disulfide in an aqueous solution to produce an alkali metal salt of dithiocarbamate and the alkali metal salt then reacted with an alkali metal molybdate in the presence of acid to produce the dihydrocarbyl substituted dithiocarbamate of molybdenum. The process is completed in an inert atmosphere and within a relatively narrow range of temperatures so as to avoid the production of by-products which have heretofore reduced both the yield and purity of the final product. The preparation of the alkali metal salt of dithiocarbamate is completed at a temperature generally within the range from about -5 to about 30.degree. C. The acidification of the alkali metal salt of dithiocarbamate is completed, generally, at a temperature within the range from about -5 to about 5.degree. C.
    Type: Grant
    Filed: September 3, 1985
    Date of Patent: July 21, 1987
    Assignee: Exxon Research and Engineering Company
    Inventors: Gopal H. Singhal, Claude C. Culross