Patents by Inventor Claude Pare

Claude Pare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985519
    Abstract: A laser system based on nonlinear pulse compression and a LMA optical fiber therefor are provided. The LMA optical fiber is configured to amplify seed light pulses and promote the onset of nonlinear spectral broadening. The LMA optical fiber includes a first section having constant core and cladding diameters and receiving and supporting propagation of the light pulses in multiple transversal modes. The first section is configured to suppress high order modes propagating therealong. The LMA optical fiber further includes a tapered second section receiving the fundamental mode from the first section, the core and cladding diameters increasing gradually along said second section so as to provide an adiabatic transition of the fundamental mode. The LMA optical fiber further includes an optional third section having constant core and cladding diameters. Dispersive compression of the light pulses outputted by the LMA optical fiber provides excellent beam quality and high peak powers.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: April 20, 2021
    Assignee: Institut National D'Optique
    Inventors: Vincent Roy, Claude Paré, Louis Desbiens
  • Publication number: 20180375280
    Abstract: A laser system based on nonlinear pulse compression and a LMA optical fiber therefor are provided. The LMA optical fiber is configured to amplify seed light pulses and promote the onset of nonlinear spectral broadening. The LMA optical fiber includes a first section having constant core and cladding diameters and receiving and supporting propagation of the light pulses in multiple transversal modes. The first section is configured to suppress high order modes propagating therealong. The LMA optical fiber further includes a tapered second section receiving the fundamental mode from the first section, the core and cladding diameters increasing gradually along said second section so as to provide an adiabatic transition of the fundamental mode. The LMA optical fiber further includes an optional third section having constant core and cladding diameters. Dispersive compression of the light pulses outputted by the LMA optical fiber provides excellent beam quality and high peak powers.
    Type: Application
    Filed: January 26, 2018
    Publication date: December 27, 2018
    Applicant: Institut National D'Optique
    Inventors: Vincent Roy, Claude Paré, Louis Desbiens
  • Patent number: 10162107
    Abstract: A multicore optical fiber includes a cladding and multiple cores disposed in the cladding. Each core has a light-guiding path and follows a helical trajectory about a fiber axis. The multicore fiber also includes a set of discrete lateral coupling zones, which are longitudinally distributed and azimuthally aligned with respect to the fiber axis. Each lateral coupling zone forms an optical coupling path, which enables at least one of lateral in-coupling and out-coupling of light between a corresponding one of the cores and an exterior of the multicore fiber. An optical probing system for light delivery to and/or light collection from a probed region includes a multicore optical fiber to enable coupling of guided light out of the cores for delivery to the probed region and/or collection of light from the probed region for coupling into one of the cores.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 25, 2018
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Claude Paré, Patrick Paradis, Chiara Meneghini, Antoine Proulx
  • Publication number: 20180231712
    Abstract: A multicore optical fiber includes a cladding and multiple cores disposed in the cladding. Each core has a light-guiding path and follows a helical trajectory about a fiber axis. The multicore fiber also includes a set of discrete lateral coupling zones, which are longitudinally distributed and azimuthally aligned with respect to the fiber axis. Each lateral coupling zone forms an optical coupling path, which enables at least one of lateral in-coupling and out-coupling of light between a corresponding one of the cores and an exterior of the multicore fiber. An optical probing system for light delivery to and/or light collection from a probed region includes a multicore optical fiber to enable coupling of guided light out of the cores for delivery to the probed region and/or collection of light from the probed region for coupling into one of the cores.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Claude PARÉ, Patrick PARADIS, Chiara MENEGHINI, Antoine PROULX
  • Patent number: 9753055
    Abstract: An optical module for use in a motion responsive system includes a support and a proof mass mechanically coupled and displaceable relative to the support along at least one sensing axis in response to a motion experienced by the support. The module also includes an optical monitoring assembly for monitoring the proof mass with an optical beam impinging on the proof mass, the beam including a plurality of dedicated spectral components. The module further includes an optical spectral filter including a plurality of filtering regions, each being associated with a corresponding dedicated spectral component and having a spectral profile including a distinct dedicated filtering band encompassing the spectral component, such that a displacement of the proof mass along the at least one sensing axis produces, after filtering of the beam, a change in optical power of the spectral components indicative of the motion experienced by the support.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: September 5, 2017
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Alex Paquet, Claude Paré, Marco Michele Sisto
  • Publication number: 20170235049
    Abstract: Optical fiber assemblies for filtering of higher-order modes include a winding support and an optical fiber wound along a winding path on the winding support. The optical fiber is configured to support a fundamental transverse mode and one or more higher-order transverse modes. The optical fiber has a longitudinal fiber axis, a core, a cladding surrounding the core, a transverse cross-section lacking circular symmetry, and a rotation imparted thereto about the longitudinal fiber axis. The rotation and winding of the optical fiber provide stronger attenuation of the one or more higher-order transverse modes as compared to the fundamental transverse mode. In some implementations, the winding path has a non-constant radius of curvature. In other implementations, the optical fiber has a diameter larger than 10 micrometers and at least one stress-applying part arranged in the cladding about the core. Methods perform higher-order-mode filtering.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 17, 2017
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Marc DELADURANTAYE, Claude PARÉ, Pierre LAPERLE
  • Publication number: 20160202284
    Abstract: optical module for use in a motion responsive system includes a support and a proof mass mechanically coupled and displaceable relative to the support along at least one sensing axis in response to a motion experienced by the support. The module also includes an optical monitoring assembly for monitoring the proof mass with an optical beam impinging on the proof mass, the beam including a plurality of dedicated spectral components. The module further includes an optical spectral filter including a plurality of filtering regions, each being associated with a corresponding dedicated spectral component and having a spectral profile including a distinct dedicated filtering band encompassing the spectral component, such that a displacement of the proof mass along the at least one sensing axis produces, after filtering of the beam, a change in optical power of the spectral components indicative of the motion experienced by the support.
    Type: Application
    Filed: September 25, 2013
    Publication date: July 14, 2016
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Alex PAQUET, Claude PARÉ, Marco Michele SISTO
  • Patent number: 9146346
    Abstract: An optical fiber for use in a Coherent Anti-Stokes Raman Scattering (CARS) endoscope, comprising a core guiding lightwaves at a pump wavelength and at a Stokes wavelength, the core being single-mode at both wavelengths. The core is surrounded by cladding layers, including an inner cladding layer, a trench cladding layer, an intermediate cladding layer and an outer cladding layer. The refractive index of the trench cladding layer is lower than those of both neighboring cladding layers so as to define a trench in the radial refractive-index profile. The bending losses of the fundamental LP01 mode of the fiber at the Stokes wavelength are limited while maintaining high confinement losses for the higher-order LP11 mode of the fiber at the pump wavelength. The combination of the intermediate and outer cladding layers forms a multimode waveguide for guiding a collected CARS signal generated by an object or medium probed with the endoscope.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: September 29, 2015
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Claude Paré, Huimin Zheng, Pascal Deladurantaye, Jean-François Cormier
  • Publication number: 20140301707
    Abstract: The present disclosure relates to a multimode optical waveguide comprising a cladding and a core. The core of the multimode optical waveguide has a polygonal cross-section. The core forms a coil spun around the longitudinal axis of the cladding. The multimode optical waveguide may be used to realize a mode scrambler and a mode conditioner.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Marco Michele SISTO, Claude PARE, Andre CROTEAU
  • Publication number: 20140212083
    Abstract: An optical fiber for use in a Coherent Anti-Stokes Raman Scattering (CARS) endoscope, comprising a core guiding lightwaves at a pump wavelength and at a Stokes wavelength, the core being single-mode at both wavelengths. The core is surrounded by cladding layers, including an inner cladding layer, a trench cladding layer, an intermediate cladding layer and an outer cladding layer. The refractive index of the trench cladding layer is lower than those of both neighboring cladding layers so as to define a trench in the radial refractive-index profile. The bending losses of the fundamental LP01 mode of the fiber at the Stokes wavelength are limited while maintaining high confinement losses for the higher-order LP11 mode of the fiber at the pump wavelength. The combination of the intermediate and outer cladding layers forms a multimode waveguide for guiding a collected CARS signal generated by an object or medium probed with the endoscope.
    Type: Application
    Filed: January 31, 2014
    Publication date: July 31, 2014
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Claude PARÉ, Huimin ZHENG, Pascal DELADURANTAYE, Jean-François CORMIER
  • Patent number: 8731358
    Abstract: Multi-cladding optical fibers to be used in the context of fiber amplifiers and fiber lasers are described herein. Embodiments of optical fibers include a rare-earth doped core into which the signal field is to be amplified. The doped core is surrounded by multiple claddings that guide the pump field to be absorbed by the reactive core material. The first cladding has a depressed refractive index to improve high-order mode bending losses without incurring significant fundamental mode bending losses.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: May 20, 2014
    Inventors: Claude Pare, Pierre Laperle, Huimin Zheng, Andre Croteau
  • Patent number: 8574920
    Abstract: An optical fiber polarimetric chemical sensor for capillary gas chromatography in which a sample fluid is injected into a capillary in the form of a periodic pulse train. Each individual pulse defines a moving polarization coupling zone that affects the polarization state of the light propagating in a birefringent optical waveguide that includes the capillary. The spacing between consecutive coupling zones can be made equal to the polarization beat length of the waveguide when the injection frequency of the pulses is properly selected, thus defining a resonance condition for a given analyte. The contributions of the successive coupling zones present along the length of the capillary then add up in phase, thus resulting in a detected optical signal having an enhanced amplitude peak at the injection frequency. In this manner, the sensitivity can be enhanced.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: November 5, 2013
    Assignee: Institut National d'Optique
    Inventors: Serge Caron, Claude Pare
  • Patent number: 8536542
    Abstract: An apparatus and method for analyzing a fluid with particle analytes, where the fluid is fed through a passageway within an optical fiber and excitation light is guided by the optical fiber across the passageway and intersects the fluid therein. The optical core is made multimode and is adapted to shape the excitation light with a uniform spatial illumination over a cross-section of the optical core and the passageway is configured relative to the optical core such that the particle analytes are exposed to substantially equal excitation light while circulating in the passageway.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 17, 2013
    Assignee: Institut National d'Optique
    Inventors: Michel Fortin, Alain Chandonnet, Claude Pare
  • Publication number: 20130014559
    Abstract: An optical fiber polarimetric chemical sensor for capillary gas chromatography in which a sample fluid is injected into a capillary in the form of a periodic pulse train. Each individual pulse defines a moving polarization coupling zone that affects the polarization state of the light propagating in a birefringent optical waveguide that includes the capillary. The spacing between consecutive coupling zones can be made equal to the polarization beat length of the waveguide when the injection frequency of the pulses is properly selected, thus defining a resonance condition for a given analyte. The contributions of the successive coupling zones present along the length of the capillary then add up in phase, thus resulting in a detected optical signal having an enhanced amplitude peak at the injection frequency. In this manner, the sensitivity can be enhanced.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Claude Paré, Serge Caron
  • Patent number: 8120774
    Abstract: There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 21, 2012
    Assignee: Institut National d'Optique
    Inventors: Andre Fougeres, Liya Muslinkina, Claude Pare, Serge Caron
  • Publication number: 20110291025
    Abstract: An apparatus and method for analyzing a fluid with particle analytes, where the fluid is fed through a passageway within an optical fiber and excitation light is guided by the optical fiber across the passageway and intersects the fluid therein. The optical core is made multimode and is adapted to shape the excitation light with a uniform spatial illumination over a cross-section of the optical core and the passageway is configured relative to the optical core such that the particle analytes are exposed to substantially equal excitation light while circulating in the passageway.
    Type: Application
    Filed: April 13, 2010
    Publication date: December 1, 2011
    Inventors: Michel Fortin, Alain Chandonnet, Claude Pare
  • Publication number: 20110091150
    Abstract: There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
    Type: Application
    Filed: November 23, 2010
    Publication date: April 21, 2011
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Serge Caron, Liya MUSLINKINA, Claude PARE, André Fougeres
  • Publication number: 20110081123
    Abstract: Multi-cladding optical fibers to be used in the context of fiber amplifiers and fiber lasers are described herein. Embodiments of optical fibers include a rare-earth doped core into which the signal field is to be amplified. The doped core is surrounded by multiple claddings that guide the pump field to be absorbed by the reactive core material. The first cladding has a depressed refractive index to improve high-order mode bending losses without incurring significant fundamental mode bending losses.
    Type: Application
    Filed: January 17, 2008
    Publication date: April 7, 2011
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Claude Pare, Pierre Laperle, Huimin Zheng, Andre Crotrau
  • Patent number: 7864321
    Abstract: There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: January 4, 2011
    Assignee: Institut National D'Optique
    Inventors: Serge Caron, Lia Mouslinkina, Claude Pare, André Fougeres
  • Publication number: 20090181842
    Abstract: A method for manufacturing a polarization-maintaining optical fiber is provided. The method includes (a) making a fiber preform by providing in an over-cladding tube: a core rod having an inner core and a cladding surrounding the inner core; at least one stress-applying part (SAP) disposed adjacent to the core rod along an outer periphery of the cladding thereof and having a coefficient of thermal expansion different from that of the cladding; inner filler rods arranged along the outer periphery of the core rod at positions where the SAP is not disposed and having a coefficient of thermal expansion different from that of the SAP; and a plurality of outer filler rods arranged adjacent the over-cladding tube between the over-cladding tube and inner filler rods, SAP and core rod, and consisting of a same material as the over-cladding tube; and (b) drawing the fiber preform to obtain the optical fiber.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 16, 2009
    Applicant: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Antoine Proulx, Steeve Morency, Claude Pare