Patents by Inventor Claudia Angeli

Claudia Angeli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957910
    Abstract: Methods of enabling locomotor control, postural control, voluntary control of body movements (e.g., in non-weight bearing conditions), and/or autonomic functions in a human subject having a spinal cord injury, a brain injury, or a neurological neuromotor disease are described.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 16, 2024
    Assignees: California Institute of Technology, University of Louisville Research Foundation, Inc., The Regents of the University of California
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Publication number: 20240050746
    Abstract: The present invention relates to systems and methods for improvement of physiological function in an individual with a spinal cord injury via electrical stimulation of the spinal cord. A 3D model of the spinal cord is used to determine an initial position for an electrode array to deliver stimulation. Spinal cord electrical stimulation is configurable to target different physiological functions with surgical implantation of the neurostimulator at a singular location. Such systems and methods include (i) anatomical specificity to target the appropriate region of the spinal cord for stimulation, (ii) electrical specificity to provide the appropriate stimulation by delivery method, frequency, pulse duration, and other factors, and (iii) physiological specificity to evoke, suppress, increase, or decrease a specific physiological result.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 15, 2024
    Inventors: Claudia Angeli, Charles Hubscher, Gail F. Forrest, Enrico Rejc, Susan J. Harkema, Maxwell Boakye, Yury Gerasimenko
  • Publication number: 20230414290
    Abstract: Methods for optimization of surgical placement of an implantable electrode for spinal cord epidural stimulation of a subject include creating a computational model of the subject spinal cord based on medical imagery, determining the position of the lumbosacral enlargement, and determining an optimal placement to maximize volumetric coverage of the lumbosacral enlargement by the implantable electrode.
    Type: Application
    Filed: November 22, 2021
    Publication date: December 28, 2023
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Samineh Mesbah, Maxwell Boakye, Claudia Angeli, Yangsheng Chen
  • Patent number: 11813446
    Abstract: The present invention relates to methods for improvement in lower urinary tract function in an individual with neurogenic urological dysfunction through epidural stimulation of the spinal cord. In certain embodiments, the methods comprise applying a pattern of epidural electrical stimulation to the spinal cord of an individual with impaired lower urinary tract under stimulation parameters sufficient to improve the storage of fluid in the bladder, sensations of fullness and/or emptying, detrusor over-activity, high detrusor pressure, voiding the bladder, transitioning from a storage state to a voiding state, and decreasing detrusor-external urethral sphincter dyssynergia. In certain embodiments, additional patterns of epidural electrical stimulation may be applied simultaneously, such as to maintain a normotensive cardiovascular state of the individual.
    Type: Grant
    Filed: April 4, 2020
    Date of Patent: November 14, 2023
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Charles S. Hubscher, Susan J. Harkema, April N. Herrity, Yangsheng Chen, Claudia Angeli
  • Patent number: 11691016
    Abstract: Patients with spinal cord injuries have benefited from neurostimulation therapy comprising delivery of electrical stimulation to enable or excite neurological responses using an implantable neurostimulator having an electrode array. Dangerous levels of charge are avoided while providing multiple, simultaneous stimulation waveforms by inducing a short in an electrode when a monitored value reaches or exceeds a predetermined threshold.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: July 4, 2023
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Yangsheng Chen, Claudia Angeli, Douglas J. Jackson, Manikandan Ravi, John Naber, Robert S. Keynton, Thomas Roussel, Saliya Kirigeeganage
  • Publication number: 20220339450
    Abstract: Disclosed herein are devices and methods used with neurostimulation therapy for spinal cord injury. More particularly, embodiments of the present invention relate to a sync pulse detector and methods for synchronizing signals from an implanted neurostimulator with measured physiological responses and other data.
    Type: Application
    Filed: February 11, 2022
    Publication date: October 27, 2022
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Susan J. Harkema, Yangsheng Chen, Douglas J. Jackson, Manikandan Ravi, Claudia Angeli
  • Publication number: 20220193415
    Abstract: A closed loop system for control of spinal cord epidural stimulation includes a second controller hosting software for receiving, from at least one sensor, physiological data from a subject, generating a stimulation configuration based on the data, and transmitting the configuration to a first controller which operatively causes a neurostimulator to apply the stimulation configuration to the subject, the physiological results of such stimulation are monitored by the at least one sensor.
    Type: Application
    Filed: April 4, 2020
    Publication date: June 23, 2022
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: SUSAN J. HARKEMA, ENRICO REJC, CLAUDIA ANGELI, CHARLES H. HUBSCHER, APRIL N. HERRITY, YANGSHENG CHEN, SEVDA G. ASLAN
  • Publication number: 20210402186
    Abstract: Methods of enabling locomotor control, postural control, voluntary control of body movements (e.g., in non-weight bearing conditions), and/or autonomic functions in a human subject having a spinal cord injury, a brain injury, or a neurological neuromotor disease are described.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Patent number: 11116976
    Abstract: Methods comprising applying electrical stimulation to patients in conjunction with physical training are described.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 14, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Publication number: 20210228884
    Abstract: Patients with spinal cord injuries have benefited from neurostimulation therapy comprising delivery of electrical stimulation to enable or excite neurological responses using an implantable neurostimulator having an electrode array. Dangerous levels of charge are avoided while providing multiple, simultaneous stimulation waveforms by inducing a short in an electrode when a monitored value reaches or exceeds a predetermined threshold.
    Type: Application
    Filed: April 19, 2019
    Publication date: July 29, 2021
    Inventors: Susan J. Harkema, Yangsheng Chen, Claudia Angeli, Douglas J. Jackson, Manikandan Ravi, John Naber, Robert S. Keynton, Thomas Roussel, Saliya Kirigeeganage
  • Publication number: 20200346015
    Abstract: Methods for normalization of blood pressure for individuals with spinal cord injuries include providing such individuals with spinal cord electrical stimulation optimized for cardiovascular function. An electrode array provides specific stimulation configurations identified to maintain systolic blood pressure within targeted normative ranges without skeletal muscle activity.
    Type: Application
    Filed: January 11, 2019
    Publication date: November 5, 2020
    Inventors: Susan J. Harkema, Claudia Angeli, Yangsheng Chen
  • Publication number: 20200316378
    Abstract: The present invention relates to methods for improvement in lower urinary tract function in an individual with neurogenic urological dysfunction through epidural stimulation of the spinal cord. In certain embodiments, the methods comprise applying a pattern of epidural electrical stimulation to the spinal cord of an individual with impaired lower urinary tract under stimulation parameters sufficient to improve the storage of fluid in the bladder, sensations of fullness and/or emptying, detrusor over-activity, high detrusor pressure, voiding the bladder, transitioning from a storage state to a voiding state, and decreasing detrusor-external urethral sphincter dyssynergia. In certain embodiments, additional patterns of epidural electrical stimulation may be applied simultaneously, such as to maintain a normotensive cardiovascular state of the individual.
    Type: Application
    Filed: April 4, 2020
    Publication date: October 8, 2020
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Charles S. Hubscher, Susan J. Harkema, April N. Herrity, Yangsheng Chen, Claudia Angeli
  • Patent number: 10737095
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: Californina Institute of Technology
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Jr., Yangsheng Chen
  • Patent number: 10688302
    Abstract: Embodiments of the present invention relate to methods for applying epidural electrical stimulation to improve motor function or physiological responses in paralyzed individuals. More particularly, the present invention relates to methods for creating and applying specific configurations of epidural stimulation to assist or cause a patient to perform a complex motor function or to mitigate one or more secondary consequences of paralysis including, but not limited to, cardiovascular, respiratory, bladder, temperature and sexual dysfunction.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: June 23, 2020
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Yangshen Chen, Manikandan Ravi, Claudia Angeli, Charles Hubscher
  • Publication number: 20200060572
    Abstract: Embodiments of the present invention relate to a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effect across a high number of spinal cord epidural stimulation parameters. This new method is designed to automate the current process for performing this task that has been accomplished manually by data analysts through observation of the raw EMG signals, which is laborious and time-consuming as well as being prone to human errors. The proposed method provides fast and accurate framework for activation detection and visualization of the results within five main algorithms.
    Type: Application
    Filed: December 12, 2017
    Publication date: February 27, 2020
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Ayman El-Baz, Claudia Angeli, Samineh Mesbah
  • Publication number: 20180236240
    Abstract: Disclosed herein are devices and methods used with neurostimulation therapy for spinal cord injury. More particularly, embodiments of the present invention relate to a sync pulse detector and methods for synchronizing signals from an implanted neurostimulator with measured physiological responses and other data.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 23, 2018
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Susan J. Harkema, Yangshen Chen, Douglas J. Jackson, Manikandan Ravi, Claudia Angeli
  • Publication number: 20180229036
    Abstract: Embodiments of the present invention relate to methods for applying epidural electrical stimulation to improve motor function or physiological responses in paralyzed individuals. More particularly, the present invention relates to methods for creating and applying specific configurations of epidural stimulation to assist or cause a patient to perform a complex motor function or to mitigate one or more secondary consequences of paralysis including, but not limited to, cardiovascular, respiratory, bladder, temperature and sexual dysfunction.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 16, 2018
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Susan J. Harkema, Yangshen Chen, Manikandan Ravi, Claudia Angeli, Charles Hubscher
  • Publication number: 20180229037
    Abstract: Methods comprising applying electrical stimulation to patients in conjunction with physical training are described.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 16, 2018
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Publication number: 20180229038
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 16, 2018
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, JR., Yangsheng Chen
  • Patent number: 9931508
    Abstract: Neurostimulator devices are described comprising: a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord; one or more sensors; and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the one or more sensors and performing a machine learning method implementing a Gaussian Process Optimization on the at least one complex stimulation pattern. Methods of use are also described.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 3, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, NEURORECOVERY TECHNOLOGIES, INC.
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Yangsheng Chen