Patents by Inventor Claudia Wagner

Claudia Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117068
    Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 11, 2024
    Inventors: Meike HUTT, Felix UNVERDORBEN, Sebastian BUNK, Dominik MAURER, Martin HOFMANN, Gabriele PSZOLLA, Sara YOUSEF, Claudia WAGNER, Frank SCHWOEBEL, Heiko SCHUSTER
  • Publication number: 20240092933
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 21, 2024
    Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
  • Patent number: 11932689
    Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel engineered T cell receptor (TCR) based molecules which are selective and specific for the tumor expressing antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 19, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Felix Unverdorben, Sebastian Bunk, Martin Hofmann, Dominik Maurer, Meike Hutt, Claudia Wagner, Leonie Alten
  • Publication number: 20240052054
    Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 15, 2024
    Inventors: Meike HUTT, Felix UNVERDORBEN, Sebastian BUNK, Dominik MAURER, Martin HOFMANN, Gabriele PSZOLLA, Sara YOUSEF, Claudia WAGNER, Frank SCHWOEBEL, Heiko SCHUSTER
  • Patent number: 11859009
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: January 2, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Gabriele Pszolla, Martin Hofmann, Meike Hutt, Sebastian Bunk, Felix Unverdorben, Frank Schwoebel, Dominik Maurer, Maike Jaworski, Claudia Wagner, Florian Schwoerer, Heiko Schuster
  • Patent number: 11840577
    Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 12, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Meike Hutt, Felix Unverdorben, Sebastian Bunk, Dominik Maurer, Martin Hofmann, Gabriele Pszolla, Sara Yousef, Claudia Wagner, Frank Schwoebel, Heiko Schuster
  • Publication number: 20230357428
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: April 17, 2023
    Publication date: November 9, 2023
    Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
  • Publication number: 20230132241
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are selective and specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 8 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: January 15, 2020
    Publication date: April 27, 2023
    Inventors: Sebastian BUNK, Martin HOFMANN, Meike HUTT, Dominik MAURER, Gabriele PSZOLLA, Frank SCHWOEBEL, Felix UNVERDORBEN, Claudia WAGNER, Sara YOUSEF
  • Publication number: 20230094790
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20230091330
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 23, 2023
    Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
  • Publication number: 20230065320
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 2, 2023
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20230057987
    Abstract: The present invention provides an antigen binding protein specifically binding to a CT45 antigenic peptide that is in a complex with a major histocompatibility complex (MHC) protein, wherein the CT45 antigenic peptide comprises or consists of the amino acid sequence of SEQ ID NO: 138 (KIFEMLEGV) and wherein the antigen binding protein comprises a first polypeptide comprising a variable domain VA comprising complementarity determining regions CDRa1, CDRa2 and CDRa3 and a second polypeptide comprising a variable domain VB comprising CDRb1, CDRb2 and CDRb3. Also provided are nucleic acids encoding the antigen binding proteins, vectors comprising the nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins. The invention further provides the antigen binding proteins for use in medicine and a method of producing the antigen binding protein.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 23, 2023
    Inventors: Sara YOUSEF, Fabian BRUNK, Andreas MORITZ, Sebastian BUNK, Claudia WAGNER, Dominik MAURER, Felix UNVERDORBEN
  • Publication number: 20230051035
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 16, 2023
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20220372165
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Application
    Filed: May 4, 2022
    Publication date: November 24, 2022
    Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
  • Publication number: 20220313805
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: March 4, 2022
    Publication date: October 6, 2022
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Publication number: 20220211833
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: March 11, 2022
    Publication date: July 7, 2022
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Publication number: 20220193212
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 23, 2022
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Publication number: 20220184193
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 16, 2022
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Publication number: 20220184194
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 16, 2022
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Patent number: 11324812
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: May 10, 2022
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Claudia Wagner, Julia Leibold, Colette Song