Patents by Inventor Claudia Wendt

Claudia Wendt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9999877
    Abstract: The present invention relates to a catalyst, which may be used in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the BEA structure type, one or more zeolites of the CHA structure type, and optionally one or more zeolites of the MFI structure type, wherein at least part of the one or more zeolites of the BEA structure type contain iron (Fe), wherein at least part of the one or more zeolites of the CHA structure type contain copper (Cu), and wherein at least part of the optional one or more zeolites of the MFI structure type contain iron (Fe). Furthermore, the present invention concerns an exhaust gas treatment system comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: June 19, 2018
    Assignee: BASF SE
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Svetlana Zimmermann
  • Patent number: 9662611
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 30, 2017
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Suzanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9358503
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: June 7, 2016
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9352307
    Abstract: Described is a catalyst, preferably for use in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the MFI structure type, and one or more zeolites of the CHA structure type, wherein at least part of the one or more zeolites of the MFI structure type contain iron (Fe), and wherein at least part of the one or more zeolites of the CHA structure type contain copper (Cu). An exhaust gas treatment system is described, comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 31, 2016
    Assignee: BASF Corporation
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Martin Dieterle, Jaya L. Mohanan
  • Patent number: 9321009
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 26, 2016
    Assignee: BASF CORPORATION
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9079162
    Abstract: Disclosed is a catalyst, preferably for use in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the MFI structure type, and one or more zeolites of the BEA structure type, wherein at least part of the one or more zeolites of the MFI structure type and at least part of the one or more zeolites of the BEA structure type respectively contain iron (Fe). Furthermore, an exhaust gas treatment system is described, comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 14, 2015
    Assignees: BASF SE Ludwigshafen, N.E. CHEMCAT CORPORATION
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Edith Schneider, Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Patent number: 8858891
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Publication number: 20140248200
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Applicant: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Publication number: 20140047819
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 20, 2014
    Applicant: BASF SE
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 8568674
    Abstract: Oxidation catalyst composites for the treatment of exhaust gas emissions, such as the abatement of unburned hydrocarbons (HC), and carbon monoxide (CO) and the oxidation of NO to NO2 are disclosed The catalyst composites comprise two washcoat layers containing two different compositions of platinum group metals to optimize the NO2 exiting the catalyst composite. The key to improvement in NO oxidation is to have one catalyst layer that contains Pt while being substantially free of Pd. Methods and systems utilizing the catalyst composites are also disclosed.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Wendt, Susanne Stiebels, Helke Doering
  • Publication number: 20110305613
    Abstract: Disclosed is a catalyst, preferably for use in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the MFI structure type, and one or more zeolites of the BEA structure type, wherein at least part of the one or more zeolites of the MFI structure type and at least part of the one or more zeolites of the BEA structure type respectively contain iron (Fe). Furthermore, an exhaust gas treatment system is described, comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Application
    Filed: April 8, 2011
    Publication date: December 15, 2011
    Applicant: BASF SE
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Edith Schneider
  • Publication number: 20110305614
    Abstract: Described is a catalyst, preferably for use in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the MFI structure type, and one or more zeolites of the CHA structure type, wherein at least part of the one or more zeolites of the MFI structure type contain iron (Fe), and wherein at least part of the one or more zeolites of the CHA structure type contain copper (Cu). An exhaust gas treatment system is described, comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Application
    Filed: April 8, 2011
    Publication date: December 15, 2011
    Applicant: BASF Corporation
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Martin Dieterle, Jaya L. Mohanan
  • Publication number: 20110173950
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 21, 2011
    Applicant: BASF Catalysts LLC
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse