Patents by Inventor Claudie ROY

Claudie ROY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250206672
    Abstract: An extrudable ceramic composition comprises piezoelectric ceramic particles and carbon nanomaterial particles suspended in a carrier medium. A piezoelectric ceramic material is produced by curing the composition. The carbon nanomaterials are used as additives to extrudable ceramic compositions (e.g., piezoelectric compositions such as PZT/polymer composites, PZT/sol-gel composites, PZT emulsion pastes and the like). The addition of carbon nanomaterials imparts both beneficial rheological properties (shear thinning) and improved piezoelectric performance to the ceramic material.
    Type: Application
    Filed: March 16, 2023
    Publication date: June 26, 2025
    Inventors: Yujie ZHANG, Thomas LACELLE, Mohammad RAFIEE, Chantal PAQUET, Derek ARANGUREN VAN EGMOND, Silvio Elton KRUGER, Claudie ROY, Sarah VELLA, Ekaterina KOMAROVA
  • Publication number: 20250197584
    Abstract: An extrudable composition includes: an aqueous phase comprising acidic water and piezoelectric ceramic particles suspended in the water; and, an organic phase having an organic solvent, a curable polymer precursor or both an organic solvent and a curable polymer precursor. The composition is 3-D printable to form a self-supporting structure and may be infiltrated with an organic polymer material or cured so that the curable polymer precursor forms an organic polymer material thereby forming a piezoelectric composite having piezoelectric ceramic particles in a co-continuous phase.
    Type: Application
    Filed: March 16, 2023
    Publication date: June 19, 2025
    Inventors: Yujie ZHANG, Thomas LACELLE, Mohammad RAFIEE, Chantal PAQUET, Derek ARANGUREN VAN EGMOND, Silvio Elton KRUGER, Claudie ROY, Sarah VELLA
  • Publication number: 20250114996
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a polymer material comprising at least one thermoplastic polymer, at least one polymer precursor, or any combination thereof, and a plurality of piezoelectric particles dispersed in at least a portion of the polymer material. The piezoelectric particles may interact non-covalently with at least a portion of the polymer material, be covalently bonded to at least a portion of the polymer material, and/or be reactive with at least a portion of the polymer material. The compositions may be extrudable and formable into a self-standing three-dimensional structure upon being extruded. Additive manufacturing processes may comprise forming a printed part by depositing the compositions layer-by-layer.
    Type: Application
    Filed: March 22, 2022
    Publication date: April 10, 2025
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET, Silvio E. KRUGER, Yujie ZHANG, Derek ARANGUREN VAN EGMOND, Thomas LACELLE, Mohammad RAFIEE, Claudie ROY
  • Publication number: 20250018642
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles dispersed in at least a portion of a polymer matrix comprising first polymer material and a sacrificial material, the sacrificial material being removable from the polymer matrix to define a plurality of pores in the polymer matrix. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The sacrificial material may comprise a second polymer material. The compositions may define a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes may comprise forming a printed part by depositing the compositions layer-by-layer and introducing porosity therein.
    Type: Application
    Filed: September 27, 2024
    Publication date: January 16, 2025
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET, Silvio E. KRUGER, Mohammad RAFIEE, Yujie ZHANG, Thomas LACELLE, Derek ARANGUREN VAN EGMOND, Claudie ROY
  • Publication number: 20230357566
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a polymer matrix comprising a first polymer material and a second polymer material that are immiscible with each other, and a plurality of piezoelectric particles located in at least a portion of the polymer matrix. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The compositions may define an extrudable material that is a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes using the compositions may comprise forming a printed part by depositing the compositions layer-by-layer.
    Type: Application
    Filed: March 22, 2022
    Publication date: November 9, 2023
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET, Silvio E. KRUGER, Mohammad RAFIEE, Yujie ZHANG, Thomas LACELLE, Derek ARANGUREN VAN EGMOND, Claudie ROY
  • Publication number: 20230295447
    Abstract: The present disclosure is directed towards a formulation for piezoelectric materials. The formulation may be printed including 2D or 3D printing. The formulation contains ceramic particles, a sol-gel, a high boiling point solvent and a binder.
    Type: Application
    Filed: August 24, 2021
    Publication date: September 21, 2023
    Inventors: Chantal PAQUET, Silvio Elton KRÜGER, Thomas LACELLE, Derek ARANGUREN VAN EGMOND, Claudie ROY
  • Publication number: 20230122929
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles located in a polymer matrix comprising a first polymer material and a sacrificial material that are immiscible with each other. The sacrificial material, which may comprise a second polymer material, may be removable from the first polymer material under specified conditions. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The polymer matrix may be treated to remove the sacrificial material to introduce a plurality of pores. The compositions may have a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste.
    Type: Application
    Filed: March 22, 2022
    Publication date: April 20, 2023
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET, Silvio E. KRUGER, Mohammad RAFIEE, Yujie ZHANG, Thomas LACELLE, Derek ARANGUREN VAN EGMOND, Claudie ROY