Patents by Inventor Claudio Armando Camasca Ramirez

Claudio Armando Camasca Ramirez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9960607
    Abstract: An apparatus for wirelessly transferring power is provided. The apparatus comprises a first coupler, a second coupler, and a third coupler overlapping at least the first coupler. The apparatus further comprises a ferrimagnetic structure comprising a first portion disposed under the first coupler, a second portion disposed under the second coupler, and a gap defined between the first coupler and the second coupler, the gap physically separating the first portion from the second portion. One or both of the first portion and the second portion comprises a first plurality of ferrimagnetic strips interleaved with a second plurality of ferrimagnetic strips configured to attenuate a magnetic flux passing between the first and second couplers. The first plurality of ferrimagnetic strips are interleaved with the second plurality of ferrimagnetic strips under at least a portion of the first coupler that is overlapped by the third coupler.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: May 1, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Mickel Bipin Budhia, Nicholas Athol Keeling, Chang-Yu Huang, Jonathan Beaver, Claudio Armando Camasca Ramirez, Michael Le Gallais Kissin
  • Patent number: 9941708
    Abstract: Systems, methods, and apparatus are disclosed for power transfer including a plurality of coil structures located over a ferrite element, the plurality of coil structures configured to generate a high flux region and a low flux region, the low flux region being located between the plurality of coil structures, and a tuning capacitance located directly over the ferrite element in the low flux region.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: April 10, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Nicholas Athol Keeling, Michael Le Gallais Kissin, Mickel Bipin Budhia, Chang-Yu Huang, Jonathan Beaver, Hao Hao, Claudio Armando Camasca Ramirez
  • Patent number: 9698608
    Abstract: An apparatus for wirelessly transferring power to a receive coupler is provided. The apparatus comprises a first coupler connected to a second coupler. The apparatus further comprises a third coupler overlapping the first and second couplers. The apparatus further comprises a controller configured to receive power from at least one power supply, provide a first current to the first coupler and the second coupler in a first charging mode, and provide the first current to the first coupler and the second coupler and provide a second current to the third coupler in a second charging mode. A magnetic flux generated by the first current passing through a first portion is constructively additive with a magnetic flux generated by the first current passing through a second portion.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 4, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Nicholas Athol Keeling, Mickel Bipin Budhia, Chang-Yu Huang, Michael Le Gallais Kissin, Jr., Jonathan Beaver, Claudio Armando Camasca Ramirez
  • Patent number: 9608465
    Abstract: Systems, methods, and apparatus are disclosed for wirelessly charging an electric vehicle. In one aspect, a method of wirelessly charging an electric vehicle is provided. The method includes, obtaining a request from the electric vehicle for a level of charging power to be delivered from a power transmitter to the electric vehicle via a charging field. The method further includes controlling a current or voltage of the power transmitter based on a power efficiency factor and the requested level of charging power.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 28, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Nicholas Athol Keeling, Claudio Armando Camasca Ramirez, Jonathan Beaver, Chang-Yu Huang, Mickel Bipin Budhia, Michael Le Gallais Kissin
  • Patent number: 9511674
    Abstract: Dynamic systems may require a large number of coils (charging pads) which may be installed into the roadway to wirelessly provide power to electric vehicles as they are traveling along the roadway. The current in each of these coils may need to be turned on and off as a vehicle drives over the coils in order to efficiently utilize power and properly convey power to the passing vehicles. The supply network behind these coils may need to be capable of managing the individual coils with minimal infrastructure and cost as well as be capable of distributing the required power from the power grid to these pads efficiently and safely. The supply network may include charging coils, switches, local controllers, and distribution circuitry within a modular element, which may receive power from external sources and may be controlled by a central controller.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 6, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Nicholas Athol Keeling, Chang-Yu Huang, Michael Le Gallais Kissin, Jonathan Beaver, Mickel Bipin Budhia, Claudio Armando Camasca Ramirez
  • Publication number: 20160190814
    Abstract: An apparatus for wirelessly transferring power is provided. The apparatus comprises a first coupler, a second coupler, and a third coupler overlapping at least the first coupler. The apparatus further comprises a ferrimagnetic structure comprising a first portion disposed under the first coupler, a second portion disposed under the second coupler, and a gap defined between the first coupler and the second coupler, the gap physically separating the first portion from the second portion. One or both of the first portion and the second portion comprises a first plurality of ferrimagnetic strips interleaved with a second plurality of ferrimagnetic strips configured to attenuate a magnetic flux passing between the first and second couplers. The first plurality of ferrimagnetic strips are interleaved with the second plurality of ferrimagnetic strips under at least a portion of the first coupler that is overlapped by the third coupler.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 30, 2016
    Inventors: Mickel Bipin Budhia, Nicholas Athol Keeling, Chang-Yu Huang, Jonathan Beaver, Claudio Armando Camasca Ramirez, Michael Le Gallais Kissin
  • Publication number: 20160190815
    Abstract: An apparatus for wirelessly transferring power to a receive coupler is provided. The apparatus comprises a first coupler connected to a second coupler. The apparatus further comprises a third coupler overlapping the first and second couplers. The apparatus further comprises a controller configured to receive power from at least one power supply, provide a first current to the first coupler and the second coupler in a first charging mode, and provide the first current to the first coupler and the second coupler and provide a second current to the third coupler in a second charging mode. A magnetic flux generated by the first current passing through a first portion is constructively additive with a magnetic flux generated by the first current passing through a second portion.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 30, 2016
    Inventors: Nicholas Athol Keeling, Mickel Bipin Budhia, Chang-Yu Huang, Michael Le Gallais Kissin, Jonathan Beaver, Claudio Armando Camasca Ramirez
  • Publication number: 20160129794
    Abstract: Systems, methods, and apparatus are disclosed for a device for controlling the amount of charge provided to a charge-receiving element in a series-tuned resonant system having a series-tuned resonant charge-receiving element configured to generate a secondary voltage and a secondary current, the series-tuned resonant charge-receiving element comprising a switchable circuit responsive to a first control signal, the switchable circuit configured to alternate between providing the secondary voltage and the secondary current to a charge-receiving element and preventing the secondary voltage and the secondary current from being provided to the charge-receiving element.
    Type: Application
    Filed: July 27, 2015
    Publication date: May 12, 2016
    Inventors: Chang-Yu Huang, Nicholas Athol Keeling, Michael Le Gallais Kissin, Jonathan Beaver, Mickel Bipin Budhia, Claudio Armando Camasca Ramirez
  • Publication number: 20160126746
    Abstract: Systems, methods, and apparatus are disclosed for power transfer including a plurality of coil structures located over a ferrite element, the plurality of coil structures configured to generate a high flux region and a low flux region, the low flux region being located between the plurality of coil structures, and a tuning capacitance located directly over the ferrite element in the low flux region.
    Type: Application
    Filed: July 17, 2015
    Publication date: May 5, 2016
    Inventors: Nicholas Athol Keeling, Michael Le Gallais Kissin, Mickel Bipin Budhia, Chang-Yu Huang, Jonathan Beaver, Hao Hao, Claudio Armando Camasca Ramirez
  • Publication number: 20150303714
    Abstract: Systems, methods, and apparatus are disclosed for wirelessly charging an electric vehicle. In one aspect, a method of wirelessly charging an electric vehicle is provided. The method includes, obtaining a request from the electric vehicle for a level of charging power to be delivered from a power transmitter to the electric vehicle via a charging field. The method further includes controlling a current or voltage of the power transmitter based on a power efficiency factor and the requested level of charging power.
    Type: Application
    Filed: August 29, 2014
    Publication date: October 22, 2015
    Inventors: Nicholas Athol Keeling, Claudio Armando Camasca Ramirez, Jonathan Beaver, Chang-Yu Huang, Mickel Bipin Budhia, Michael Le Gallais Kissin
  • Publication number: 20150298559
    Abstract: Dynamic systems may require a large number of coils (charging pads) which may be installed into the roadway to wirelessly provide power to electric vehicles as they are traveling along the roadway. The current in each of these coils may need to be turned on and off as a vehicle drives over the coils in order to efficiently utilize power and properly convey power to the passing vehicles. The supply network behind these coils may need to be capable of managing the individual coils with minimal infrastructure and cost as well as be capable of distributing the required power from the power grid to these pads efficiently and safely. The supply network may include charging coils, switches, local controllers, and distribution circuitry within a modular element, which may receive power from external sources and may be controlled by a central controller.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 22, 2015
    Inventors: Nicholas Athol Keeling, Chang-Yu Huang, Michael Le Gallais Kissin, Jonathan Beaver, Mickel Bipin Budhia, Claudio Armando Camasca Ramirez