Patents by Inventor Claus G. Lugmair

Claus G. Lugmair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230398518
    Abstract: The present disclosure related generally to a high-temperature water-gas shift catalyst composition comprising: a ZnO phase, present in the composition in an amount of 5-70 wt. %; a zinc-aluminum spinel phase, present in the composition in an amount of 30-95 wt. %; wherein the molar ratio of Zn atoms to Al atoms in the catalyst composition is at least 1:1.
    Type: Application
    Filed: May 22, 2023
    Publication date: December 14, 2023
    Inventors: Claus G. Lugmair, Robert J. O'Brien, Yangxue Gao, Hongyi Hou
  • Publication number: 20230398521
    Abstract: This invention describes water-gas shift reaction catalyst materials. More particularly, the present invention describes spinel-comprising catalysts useful in high-temperature water-gas shift reactions, to methods for making such catalysts, and to methods for forming hydrogen with such catalysts.
    Type: Application
    Filed: May 22, 2023
    Publication date: December 14, 2023
    Inventors: Hongyi Hou, Claus G. Lugmair, Tobias Henkel, Robert J. O’Brien, Marian Alcid, Yangxue Gao, Tony Volpe
  • Publication number: 20230398519
    Abstract: The present invention relates to a novel catalyst for LTS processes, the method of its preparation and LTS process by use of this catalyst.
    Type: Application
    Filed: March 15, 2023
    Publication date: December 14, 2023
    Inventors: Tobias MUELLER, Stephan J. REITMEIER, Hongyi C. HOU, Claus G. LUGMAIR
  • Patent number: 10933405
    Abstract: The present disclosure relates to dehydrogenation catalysts based on one or more certain group 13 and group 14 elements that further include additional metal components, to methods for making such catalysts, and to methods for dehydrogenating hydrocarbons using such catalysts. One aspect of the disclosure provides a calcined dehydrogenation catalyst that includes a primary species P1 selected from the group consisting of Ga, In, Tl, Ge, Sn and Pb and combinations thereof; a primary species P2 selected from the lanthanides; a promoter M1 selected from the group consisting of Ni, Pd and Pt; a promoter M2 selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr and Ba, on a silica-alumina support.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Clariant International Ltd
    Inventors: Vladimir Z. Fridman, Rong Xing, Matt Greaney, David Lowe, Claus G. Lugmair
  • Publication number: 20200156050
    Abstract: Inventive dehydrogenation catalysts according to multiple embodiments and alternatives contain about 60 to about 80% of iron oxide; with up to 100 ppm and in some embodiments from about 1 to about 65 ppm, of a platinum group metal or metals, being rhodium or rhodium combined with palladium; and a promoter that may include, among others, potassium and cerium; to achieve an improved ethylbenzene conversion to styrene at more favorable steam to oil ratios, including such a ratio of 0.8:1.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 21, 2020
    Inventors: Tatiana SHVAREVA-PIEKARZ, Claus G. LUGMAIR, David LOWE, Anthony F. VOLPE, Nobuaki KODAKARI, Shinya HIRAHARA
  • Publication number: 20200139358
    Abstract: The present disclosure relates to zeolite-containing catalysts useful in the transalkylation of aromatic hydrocarbons, such as the isomerization of ethylbenzene, to methods for making such catalysts, and to methods for aromatic transalkylation with such catalysts. One aspect of the disclosure provides an aromatic transalkylation catalyst that includes one or more zeolites, an inorganic binder, a transition metal catalyst, and vanadium.
    Type: Application
    Filed: October 4, 2019
    Publication date: May 7, 2020
    Inventors: Malati RAGHUNATH, Matthew GREANEY, Aaron B. MILLER, Claus G. LUGMAIR, Anthony F. VOLPE
  • Publication number: 20200129961
    Abstract: The present disclosure relates to dehydrogenation catalysts based on one or more certain group 13 and group 14 elements that further include additional metal components, to methods for making such catalysts, and to methods for dehydrogenating hydrocarbons using such catalysts. One aspect of the disclosure provides a calcined dehydrogenation catalyst that includes a primary species P1 selected from the group consisting of Ga, In, TI, Ge, Sn and Pb and combinations thereof; a primary species P2 selected from the lanthanides; a promoter M1 selected from the group consisting of Ni, Pd and Pt; a promoter M2 selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr and Ba, on a silica-alumina support.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 30, 2020
    Inventors: Vladimir Z. Fridman, Rong Xing, Matt Greaney, David LOWE, Claus G. LUGMAIR
  • Patent number: 10479760
    Abstract: The present disclosure relates generally to catalyst materials and processes for making and using them. More particularly, the present disclosure relates to molybdenum, bismuth and iron-containing metal oxide catalyst materials useful, for example, in the partial oxidation or ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrolein, methacrolein, acrylonitrile, and methacrylonitrile using such catalysts.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: November 19, 2019
    Assignee: Clariant Corporation
    Inventors: Claus G. Lugmair, Hailian Li
  • Patent number: 10479759
    Abstract: The present disclosure relates generally to catalyst materials and processes for making and using them. More particularly, the present disclosure relates to molybdenum, bismuth and iron-containing metal oxide catalyst materials useful, for example, in the partial oxidation or ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrolein, methacrolein, acrylonitrile, and methacrylonitrile using such catalysts.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: November 19, 2019
    Assignee: Clariant Corporation
    Inventors: Hailian Li, Claus G. Lugmair
  • Patent number: 10189014
    Abstract: The present disclosure relates to solid phosphoric acid (SPA) catalysts useful in the conversion of hydrocarbons, such as the oligomerization of olefins, to methods for making such SPA catalysts, and to methods for converting hydrocarbons by contacting hydrocarbons with such catalyst. For example, in certain embodiments, the disclosure provides a calcined solid phosphoric acid catalyst composition that includes phosphoric acid and silicon phosphates, and in which (i) one or more promoters each selected from the group consisting of boron, bismuth, tungsten, silver and lanthanum is present; (ii) the composition is a calcined product of a formable mixture including silica-alumina clay, silica fiber and/or silica alumina fiber; or (iii) the composition is a calcined product of a formable mixture including fumed silica.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 29, 2019
    Assignee: Clariant Corporation
    Inventors: Malati Raghunath, Aaron Miller, Claus G Lugmair, Anthony Volpe
  • Patent number: 10137437
    Abstract: The present invention relates to a method for producing a supported catalyst, a catalyst which is obtainable using the method, and use thereof for the partial oxidation or ammoxidation of olefins, in particular for the oxidation of propene to acrolein, of isobutene to methacrolein, and/or the ammoxidation of propene to acrylonitrile. The method according to the invention includes the following steps: a) providing a solution in which precursor compounds of the catalytically active component are essentially completely dissolved in a suitable solvent; b) bringing the solution obtained in step a) into contact with a (chemically) inert, porous support having a specific surface of 1 to 500 m2/g; c) heat treatment of the material obtained in step b), in which the precursor compounds of the catalytically active component are converted to their oxides.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 27, 2018
    Assignee: Clariant Corpoation
    Inventors: Valery Sokolovskii, David Michael Lowe, Deepti Machiraju, Hongyi C. Hou, Gerhard Mestl, Claus G. Lugmair, Aaron B. Miller, Anthony F. Volpe, Jr.
  • Publication number: 20180222850
    Abstract: The present disclosure relates generally to catalyst materials and processes for making and using them. More particularly, the present disclosure relates to molybdenum, bismuth and iron-containing metal oxide catalyst materials useful, for example, in the partial oxidation or ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrolein, methacrolein, acrylonitrile, and methacrylonitrile using such catalysts.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 9, 2018
    Inventors: Hailian LI, Claus G. LUGMAIR
  • Publication number: 20180222851
    Abstract: The present disclosure relates generally to catalyst materials and processes for making and using them. More particularly, the present disclosure relates to molybdenum, bismuth and iron-containing metal oxide catalyst materials useful, for example, in the partial oxidation or ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrolein, methacrolein, acrylonitrile, and methacrylonitrile using such catalysts.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 9, 2018
    Inventors: Claus G. LUGMAIR, Hailian LI
  • Publication number: 20180036720
    Abstract: The present disclosure relates to solid phosphoric acid (SPA) catalysts useful in the conversion of hydrocarbons, such as the oligomerization of olefins, to methods for making such SPA catalysts, and to methods for converting hydrocarbons by contacting hydrocarbons with such catalyst. For example, in certain embodiments, the disclosure provides a calcined solid phosphoric acid catalyst composition that includes phosphoric acid and silicon phosphates, and in which (i) one or more promoters each selected from the group consisting of boron, bismuth, tungsten, silver and lanthanum is present; (ii) the composition is a calcined product of a formable mixture including silica-alumina clay, silica fiber and/or silica alumina fiber; or (iii) the composition is a calcined product of a formable mixture including fumed silica.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 8, 2018
    Inventors: Malati Raghunath, Aaron Miller, Claus G. Lugmair, Anthony Volpe
  • Patent number: 9815045
    Abstract: The present disclosure relates to metal oxide catalyst materials useful, for example, in the ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrylonitrile and methacrylonitrile using such catalyst materials. In certain aspects, a catalyst material is a fused composite of a metal oxide catalyst and nanoparticulate silica, the nanoparticulate silica comprising in the range of about 40 wt % to about 80 wt % of silica having a particle size in the range of 10 nm to 35 nm, and in the range of about 20 wt % to about 60 wt % of silica having a particle size in the range of 36 nm to 80 nm. The metal oxide catalyst can be, for example, a molybdenum-containing mixed metal oxide catalyst.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 14, 2017
    Assignee: Clariant Corporation
    Inventors: Claus G. Lugmair, Hailian Li
  • Publication number: 20160279618
    Abstract: The present disclosure relates to metal oxide catalyst materials useful, for example, in the ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrylonitrile and methacrylonitrile using such catalyst materials. In certain aspects, a catalyst material is a fused composite of a metal oxide catalyst and nanoparticulate silica, the nanoparticulate silica comprising in the range of about 40 wt % to about 80 wt % of silica having a particle size in the range of 10 nm to 35 nm, and in the range of about 20 wt % to about 60 wt % of silica having a particle size in the range of 36 nm to 80 nm. The metal oxide catalyst can be, for example, a molybdenum-containing mixed metal oxide catalyst.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 29, 2016
    Inventors: Claus G. Lugmair, Hailian Li
  • Publication number: 20160051967
    Abstract: The present invention relates to a method for producing a supported catalyst, a catalyst which is obtainable using the method, and use thereof for the partial oxidation or ammoxidation of olefins, in particular for the oxidation of propene to acrolein, of isobutene to methacrolein, and/or the ammoxidation of propene to acrylonitrile. The method according to the invention includes the following steps: a) providing a solution in which precursor compounds of the catalytically active component are essentially completely dissolved in a suitable solvent; b) bringing the solution obtained in step a) into contact with a (chemically) inert, porous support having a specific surface of 1 to 500 m2/g; c) heat treatment of the material obtained in step b), in which the precursor compounds of the catalytically active component are converted to their oxides.
    Type: Application
    Filed: April 11, 2014
    Publication date: February 25, 2016
    Inventors: Valery Sokolovskii, David Michael Lowe, Deepti Machiraju, Hongyi C. Hou, Gerhard Mestl, Claus G. Lugmair, Aaron B. Miller, Anthony F. Volpe, JR.
  • Patent number: 9205412
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 8, 2015
    Assignee: CLARIANT CORPORATION
    Inventors: Aaron B. Miller, Malati Raghunath, Valery Sokolovskii, Claus G. Lugmair, Anthony F. Volpe, Jr., Wenqin Shen, Wayne Turbeville
  • Publication number: 20140249334
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Clariant Corporation
    Inventors: Aaron B. MILLER, Malati RAGHUNATH, Valery SOKOLOVSKII, Claus G. LUGMAIR, Anthony F. VOLPE, JR., Wenqin SHEN, Wayne TURBEVILLE
  • Patent number: 8465678
    Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 18, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yijun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans