Patents by Inventor Claus Gerdes

Claus Gerdes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8435362
    Abstract: In a process for producing a large single-crystal component or directionally solidified component made of a nickel-based superalloy, the component is first cast into shape in a known manner to form a microstructure comprising dendrites, and then solution annealing for homogenizing the cast microstructure of the component and two-stage precipitation heat treatment are carried out. In order to avoid chemical inhomogeneities and internal stresses caused thereby, a HIP process with a pressure of higher than 160 MPa is carried out following the solution annealing.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 7, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventors: Mohamad Nazmy, Claus Gerdes, Andreas Künzler
  • Publication number: 20120000577
    Abstract: In a process for producing a large single-crystal component or directionally solidified component made of a nickel-based superalloy, the component is first cast into shape in a known manner to form a microstructure comprising dendrites, and then solution annealing for homogenizing the cast microstructure of the component and two-stage precipitation heat treatment are carried out. In order to avoid chemical inhomogeneities and internal stresses caused thereby, a HIP process with a pressure of higher than 160 MPa is carried out following the solution annealing.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Inventors: Mohamed Nazmy, Claus Gerdes, Andreas Künzler
  • Patent number: 8007715
    Abstract: A steel has the following chemical composition (amounts in % by weight): 0.05-0.14 C, 8-13 Cr, 1-2.6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 2.1-4.0 Re, 0-0.07 Ta, 0-60 ppm Pd, remainder Fe and unavoidable impurities. The steel can be used effectively as a welding additive material and has outstanding properties at very high temperatures, in particular a good creep rupture strength/resistance and a good oxidation resistance.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 30, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Mohamed Nazmy, Paul Claus Gerdes, Andreas Kuenzler
  • Publication number: 20100206937
    Abstract: A steel has the following chemical composition (amounts in % by weight): 0.05-0.14 C, 8-13 Cr, 1-2.6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 2.1-4.0 Re, 0-0.07 Ta, 0-60 ppm Pd, remainder Fe and unavoidable impurities. The steel can be used effectively as a welding additive material and has outstanding properties at very high temperatures, in particular a good creep rupture strength/resistance and a good oxidation resistance.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventors: Mohamed Nazmy, Paul Claus Gerdes, Andreas Kuenzler
  • Publication number: 20060073019
    Abstract: The invention relates to an axial-flow thermal turbomachine having a metallic rotor (1), in which rotor blades (3) made of an intermetallic compound are mounted in a circumferential groove to form a row of blades. The invention is characterized in that at least two rotor blades (3?) which are at a uniform distance from one another and are made of a more ductile material are arranged in the said row of blades between the intermetallic rotor blades (3), the rotor blades (3?) made of the more ductile material either being considerably longer than the intermetallic blades (3) or, if they are of the same length, having a different blade tip shape than the intermetallic blades (3).
    Type: Application
    Filed: March 25, 2004
    Publication date: April 6, 2006
    Inventors: Hans Wettstein, Mohamed Nazmy, Claus Gerdes
  • Publication number: 20060062674
    Abstract: The invention relates to an axial-flow thermal turbomachine, having a rotor (1) made from a metallic material with a first density (D1), in which rotor blades (3, 3?) and intermediate pieces (4) are mounted alternately in a circumferential groove. It is characterized in that said intermediate pieces (4) consist of a material with a second density (D2), which is lower than the first density (D1). Particularly suitable materials for the intermediate pieces (4) are intermetallic compounds, preferably intermetallic ?-titanium aluminide alloys or intermetallic orthorhombic titanium aluminide alloys, but also titanium alloys.
    Type: Application
    Filed: March 25, 2004
    Publication date: March 23, 2006
    Inventors: Hans Wettstein, Mohamed Nazmy, Claus Gerdes
  • Patent number: 5573604
    Abstract: The process serves for the manufacture of an erosion-resistant turbine blade which is preferably used in the low-pressure stage of a steam turbine and is made of a vanadium-containing (.alpha./.beta.)-titanium base alloy. This involves the formation, by remelt alloying of a blade section which is situated in the region of the blade tip and comprises the leading edge of the blade, in a boron-, carbon- and/or nitrogen-containing gas atmosphere, with the aid of a high-power energy source, of an erosion-resistant protective layer made of a titanium boride, titanium carbide and/or titanium nitride. The remelt alloyed blade section is subjected to a heat treatment at a temperature between 600.degree. and 750.degree. C. with the formation of a vanadium-rich .beta.-titanium phase.
    Type: Grant
    Filed: June 28, 1995
    Date of Patent: November 12, 1996
    Assignee: ABB Management AG
    Inventor: Claus Gerdes
  • Patent number: 5366345
    Abstract: A turbine blade, preferably used in the low pressure stages of a steam turbine, is formed from a basic titanium alloy. Near the blade tip, it has a region, including the blade leading edge with a surface of a material which is more resistant to erosion than the basic titanium alloy.This turbine blade should be simple to manufacture and should have a long life even under difficult operating conditions.This is achieved in that the region including the blade leading edge has a protective layer formed by surface treatment of the basic titanium alloy by means of a high-power energy source, such as, in particular, a laser.
    Type: Grant
    Filed: December 4, 1991
    Date of Patent: November 22, 1994
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Claus Gerdes, Carlo Maggi