Patents by Inventor Claus Paul Gerdes

Claus Paul Gerdes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9429021
    Abstract: The invention relates to a method for welding rotors for power generation such as gas turbines, steam turbines, and generators having a plurality of rotor discs arranged along a rotor axis. The method includes providing said discs with a weld seam preparation. The weld seam preparation includes a root, a first, gap-like welding section adjoining the root in radial direction, and a second, gap-like welding section adjoining the first welding section in radial direction. The method further includes melting the root by means of a first welding process; making a weld in the first welding section by means of a second welding process; and filling up the second welding section by means of a third welding process.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: August 30, 2016
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Sorin Keller, Werner Martin Balbach, Claus Paul Gerdes
  • Patent number: 9017605
    Abstract: A nickel-base superalloy is characterized by the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.0-1.5 Ti, 1.0-2.0 Re, 0.11-0.15 Si, 0.1-0.7 Hf, 0-0.5 Nb, 0.02-0.17 C, 50-400 ppm B, remainder Ni and production-related impurities. The alloy is distinguished by a very high resistance to oxidation, resistance to corrosion and good creep properties at high temperatures.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 28, 2015
    Assignee: Alstom Technology Ltd.
    Inventors: Mohamed Youssef Nazmy, Andreas Kuenzler, Claus Paul Gerdes
  • Patent number: 8911213
    Abstract: A rotor blade (10) for a gas turbine includes a blade airfoil (11), a blade tip (15), a blade root (14), and a platform (12) which is formed between the blade tip (15) and the blade root (14), and is assembled from a plurality of individual sections (16, 17, 18), the material of which is adapted in each case to the intended purpose of the individual section concerned. With such a rotor blade, a simplified production is achieved as a result of each of the individual sections (16, 17, 18) from the dimensions being significantly smaller than the assembled rotor blade (10).
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 16, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Herbert Brandl, Sven Schofer, Claus Paul Gerdes, Hans-Peter Bossmann
  • Publication number: 20140299581
    Abstract: The invention relates to a method for welding rotors for power generation such as gas turbines, steam turbines, and generators having a plurality of rotor discs arranged along a rotor axis. The method includes providing said discs with a weld seam preparation. The weld seam preparation includes a root, a first, gap-like welding section adjoining the root in radial direction, and a second, gap-like welding section adjoining the first welding section in radial direction. The method further includes melting the root by means of a first welding process; making a weld in the first welding section by means of a second welding process; and filling up the second welding section by means of a third welding process.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 9, 2014
    Inventors: Sorin KELLER, Werner Martin Balbach, Claus Paul Gerdes
  • Patent number: 8696980
    Abstract: A nickel-base superalloy with improved degradation behavior consists essentially of the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.1-0.6 Pt, 0.1-0.5 Nb, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, and the remainder Ni and production-related impurities.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: April 15, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Mohamed Nazmy, Claus Paul Gerdes, Andreas Kuenzler
  • Publication number: 20120187093
    Abstract: A filler material for welding is characterized by the following chemical composition (amounts in % by weight): 0.05-0.15 C, 8-11 Cr, 2.8-6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 1-3 Re, 0.001-0.07 Ta, 0.01-0.06 N, 0-60 ppm Pd, max. 0.25 P, max. 0.02 S, remainder Fe and manufacturing-related unavoidable impurities. The material has outstanding properties, in particular a good creep rupture strength/creep resistance, a good oxidation resistance and a very high toughness.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 26, 2012
    Inventors: Mohamed Youssef Nazmy, Claus Paul Gerdes, Andreas Kuenzler, Sorin Keller
  • Publication number: 20120128527
    Abstract: A nickel-base superalloy is characterized by the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.0-1.5 Ti, 1.0-2.0 Re, 0.11-0.15 Si, 0.1-0.7 Hf, 0-0.5 Nb, 0.02-0.17 C, 50-400 ppm B, remainder Ni and production-related impurities. The alloy is distinguished by a very high resistance to oxidation, resistance to corrosion and good creep properties at high temperatures.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 24, 2012
    Inventors: Mohamed Youssef NAZMY, Andreas KUENZLER, Claus Paul GERDES
  • Publication number: 20110194972
    Abstract: A nickel-base superalloy with improved degradation behavior consists essentially of the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.1-0.6 Pt, 0.1-0.5 Nb, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, and the remainder Ni and production-related impurities.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 11, 2011
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Mohamed Nazmy, Claus Paul Gerdes, Andreas Kuenzler
  • Publication number: 20100150727
    Abstract: A rotor blade (10) for a gas turbine includes a blade airfoil (11), a blade tip (15), a blade root (14), and a platform (12) which is formed between the blade tip (15) and the blade root (14), and is assembled from a plurality of individual sections (16, 17, 18), the material of which is adapted in each case to the intended purpose of the individual section concerned. With such a rotor blade, a simplified production is achieved as a result of each of the individual sections (16, 17, 18) from the dimensions being significantly smaller than the assembled rotor blade (10).
    Type: Application
    Filed: December 14, 2009
    Publication date: June 17, 2010
    Inventors: Herbert Brandl, Sven Schofer, Claus Paul Gerdes, Hans-Peter Bossmann
  • Patent number: 7048507
    Abstract: The invention relates to an axial-flow thermal turbomachine having a metallic rotor (1), in which rotor blades (3) made of an intermetallic compound are mounted in a circumferential groove to form a row of blades. The invention is characterized in that at least two rotor blades (3?) which are at a uniform distance from one another and are made of a more ductile material are arranged in the said row of blades between the intermetallic rotor blades (3), the rotor blades (3?) made of the more ductile material either being considerably longer than the intermetallic blades (3) or, if they are of the same length, having a different blade tip shape than the intermetallic blades (3).
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: May 23, 2006
    Assignee: ALSTOM Technology Ltd.
    Inventors: Hans Wettstein, Mohamed Yousef Nazmy, Claus Paul Gerdes
  • Patent number: 7037079
    Abstract: The invention relates to an axial-flow thermal turbomachine, having a rotor (1) made from a metallic material with a first density (D1), in which rotor blades (3, 3?) and intermediate pieces (4) are mounted alternately in a circumferential groove. It is characterized in that said intermediate pieces (4) consist of a material with a second density (D2), which is lower than the first density (D1). Particularly suitable materials for the intermediate pieces (4) are intermetallic compounds, preferably intermetallic ?-titanium aluminide alloys or intermetallic orthorhombic titanium aluminide alloys, but also titanium alloys.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: May 2, 2006
    Assignee: ALSTOM Technology Ltd.
    Inventors: Hans Wettstein, Mohamed Nazmy, Claus Paul Gerdes