Patents by Inventor Clay Hajime Kishiyama

Clay Hajime Kishiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9728990
    Abstract: A system and method for early identification of an impending fast-charge or fast-charge opportunity and use of that information to prepare the battery cells for the fast-charge.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 8, 2017
    Assignee: TESLA, INC.
    Inventors: Christopher Dangler, Sarah G. Stewart, Clay Hajime Kishiyama
  • Patent number: 8968949
    Abstract: A method for withdrawing heat from a battery pack is provided, wherein the heat is transferred from at least one electrode of each cell comprising the battery pack, via an electrically and thermally conductive tab, through a current collector plate and through a thermal interface layer to a temperature control panel that is coupled to an external temperature control system.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Kurt Russell Kelty, Clay Hajime Kishiyama, Anil Paryani, Alexander Thomas Jacobs, Grant Dufresne Cutler, Peng Zhou
  • Patent number: 8970173
    Abstract: A method of setting the operational mode of an electric vehicle is provided, where the operational mode is selected from a plurality of operational modes that include at least a Battery Life mode and a Standard mode, wherein the Battery Life mode is configured to select operating and charging parameters that emphasize battery health and battery life over vehicle range and/or vehicle performance. The system includes a thermal management system for maintaining the vehicle's battery pack to within any of a plurality of temperature ranges, and a charging system for charging the vehicle's battery pack to any of a plurality of minimum and maximum SOC levels and at any of a plurality of charging rates.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 3, 2015
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Vineet Haresh Mehta, Sarah G. Stewart
  • Patent number: 8963494
    Abstract: A charging system for a battery pack, including a charging station transferring energy to the battery pack at a maximum fast charge rate in a first operational mode and transferring energy to the battery pack at a slower charge rate in a second operational mode; a data collection system acquiring data indicating a state of charge of the battery pack and one or more desired charge optimization parameters; and a station control, responsive to the data and to the desired charge optimization parameters, automatically establishing a charging profile for the battery pack to assert a control signal and operate the charging station in the second operational mode whenever the charging station is able to transfer sufficient energy to the battery pack at the slower charge rate to meet an SOC target and a charge completion time target.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 24, 2015
    Assignee: Tesla Motors, Inc.
    Inventors: Clay Hajime Kishiyama, Kurt Russell Kelty
  • Patent number: 8907629
    Abstract: A multi-mode operating system for an electric vehicle is provided, the system including means for a user to select a preferred mode of operation from a plurality of operational modes that include at least a Battery Life mode and a Standard mode, wherein the Battery Life mode is configured to select operating and charging parameters that emphasize battery health and battery life over vehicle range and/or vehicle performance. The system includes a thermal management system for maintaining the vehicle's battery pack to within any of a plurality of temperature ranges, and a charging system for charging the vehicle's battery pack to any of a plurality of minimum and maximum SOC levels and at any of a plurality of charging rates.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Vineet Haresh Mehta, Sarah G. Stewart
  • Patent number: 8899492
    Abstract: A method for actively cooling the battery pack of an electric vehicle after the vehicle has been turned off, thereby limiting the adverse effects of temperature on battery life, is provided. Different battery pack cooling techniques are provided, thus allowing the cooling technique used in a particular instance to be selected not only based on the thermal needs of the battery pack, but also on the thermal capacity and energy requirements of the selected approach.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: December 2, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Clay Hajime Kishiyama
  • Patent number: 8901885
    Abstract: An automated charge preparation method periodically determines critical parameters for the set of relevant operating conditions, determines whether fast charging is possible, applies fast charging when possible, otherwise applies a dynamically scaled charging rate that is optimized based upon current critical parameters (while optionally heating the individual battery cells as long as fast charging is not available) to reduce/eliminate a risk of lithium-plating.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 2, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Clay Hajime Kishiyama, Sarah G. Stewart
  • Patent number: 8866444
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 21, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay Hajime Kishiyama, Weston Arthur Hermann, Scott Ira Kohn, Kurt Russell Kelty
  • Publication number: 20140121866
    Abstract: A system and method for early identification of an impending fast-charge or fast-charge opportunity and use of that information to prepare the battery cells for the fast-charge.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: TESLA MOTORS, INC.
    Inventors: Christopher Dangler, Sarah G. Stewart, Clay Hajime Kishiyama
  • Publication number: 20130307475
    Abstract: A charging system for a battery pack, including a charging station transferring energy to the battery pack at a maximum fast charge rate in a first operational mode and transferring energy to the battery pack at a slower charge rate in a second operational mode; a data collection system acquiring data indicating a state of charge of the battery pack and one or more desired charge optimization parameters; and a station control, responsive to the data and to the desired charge optimization parameters, automatically establishing a charging profile for the battery pack to assert a control signal and operate the charging station in the second operational mode whenever the charging station is able to transfer sufficient energy to the battery pack at the slower charge rate to meet an SOC target and a charge completion time target.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Clay Hajime Kishiyama, Kurt Russell Kelty
  • Patent number: 8536825
    Abstract: A system and method for improving cycle lifetimes for a lithium-ion battery pack, particularly for adapting to a dynamic use profile for a user.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 17, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Clay Hajime Kishiyama, Vineet Haresh Mehta, Christopher David Gadda
  • Publication number: 20130234648
    Abstract: An automated charge preparation method periodically determines critical parameters for the set of relevant operating conditions, determines whether fast charging is possible, applies fast charging when possible, otherwise applies a dynamically scaled charging rate that is optimized based upon current critical parameters (while optionally heating the individual battery cells as long as fast charging is not available) to reduce/eliminate a risk of lithium-plating.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Clay Hajime Kishiyama, Sarah G. Stewart
  • Publication number: 20130221916
    Abstract: A multi-mode operating system for an electric vehicle is provided, the system including means for a user to select a preferred mode of operation from a plurality of operational modes that include at least a Battery Life mode and a Standard mode, wherein the Battery Life mode is configured to select operating and charging parameters that emphasize battery health and battery life over vehicle range and/or vehicle performance. The system includes a thermal management system for maintaining the vehicle's battery pack to within any of a plurality of temperature ranges, and a charging system for charging the vehicle's battery pack to any of a plurality of minimum and maximum SOC levels and at any of a plurality of charging rates.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Kurt Russell Kelty, Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Vineet Haresh Mehta, Sarah G. Stewart
  • Publication number: 20130221928
    Abstract: A method of setting the operational mode of an electric vehicle is provided, where the operational mode is selected from a plurality of operational modes that include at least a Battery Life mode and a Standard mode, wherein the Battery Life mode is configured to select operating and charging parameters that emphasize battery health and battery life over vehicle range and/or vehicle performance. The system includes a thermal management system for maintaining the vehicle's battery pack to within any of a plurality of temperature ranges, and a charging system for charging the vehicle's battery pack to any of a plurality of minimum and maximum SOC levels and at any of a plurality of charging rates.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Kurt Russell Kelty, Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Vineet Haresh Mehta, Sarah G. Stewart
  • Patent number: 8389139
    Abstract: A system for integrating the venting feature of a battery with a means for simultaneously disconnecting the cell from the battery pack, thereby isolating the cell, is provided. The provided battery interconnect system is comprised of a battery, a connector plate for electrically coupling the battery to a battery pack, and an interruptible electrical connector for electrically coupling the connector plate to a battery terminal vent. The venting region, defined by scoring on the battery terminal, ruptures when the internal battery pressure exceeds the predefined battery operating range, causing the interruptible electrical connector to break and disrupt electrical continuity between the connector plate and the battery terminal.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 5, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Kurt Russell Kelty, Jeffrey Brian Straubel, Vineet Haresh Mehta
  • Publication number: 20120270080
    Abstract: A system for integrating the venting feature of a battery with a means for simultaneously disconnecting the cell from the battery pack, thereby isolating the cell, is provided. The provided battery interconnect system is comprised of a battery, a connector plate for electrically coupling the battery to a battery pack, and an interruptible electrical connector for electrically coupling the connector plate to a battery terminal vent. The venting region, defined by scoring on the battery terminal, ruptures when the internal battery pressure exceeds the predefined battery operating range, causing the interruptible electrical connector to break and disrupt electrical continuity between the connector plate and the battery terminal.
    Type: Application
    Filed: June 27, 2012
    Publication date: October 25, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Kurt Russell Kelty, Jeffrey Brian Straubel, Vineet Haresh Mehta
  • Patent number: 8241772
    Abstract: A system for integrating the venting feature of a battery with a means for simultaneously disconnecting the cell from the battery pack, thereby isolating the cell, is provided. The provided battery interconnect system is comprised of a battery, a connector plate for electrically coupling the battery to a battery pack, and an interruptible electrical connector for electrically coupling the connector plate to a battery terminal vent. The vent, defined by scoring on the battery terminal, ruptures when the internal battery pressure exceeds the predefined battery operating range, causing the interruptible electrical connector to break and disrupt electrical continuity between the connector plate and the battery terminal.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 14, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Clay Hajime Kishiyama, Kurt Russell Kelty, Jeffrey Brian Straubel, Vineet Haresh Mehta
  • Publication number: 20120153901
    Abstract: A method for withdrawing heat from a battery pack is provided, wherein the heat is transferred from at least one electrode of each cell comprising the battery pack, via an electrically and thermally conductive tab, through a current collector plate and through a thermal interface layer to a temperature control panel that is coupled to an external temperature control system.
    Type: Application
    Filed: March 2, 2012
    Publication date: June 21, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Kurt Russell Kelty, Clay Hajime Kishiyama, Anil Paryani, Alexander Thomas Jacobs, Grant Dufresne Cutler, Peng Zhou
  • Patent number: 8153290
    Abstract: One embodiment includes an electrical cell that includes a flat housing, at least one electrode and an electrically and heat conductive tab coupled to the electrode and extending through the housing for electrically and thermally coupling to a collector panel, the tab being capable of conducting both current and a substantial amount of heat out of the housing to a temperature control system. The cells may be stacked to form a battery having a temperature panel interfaced to the temperature control system by a thermal interface. The battery may propel an electrically-powered vehicle or the like.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: April 10, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Kurt Russell Kelty, Clay Hajime Kishiyama, Anil Paryani, Alexander Thomas Jacobs, Grant Dufresne Cutler, Peng Zhou
  • Patent number: 8117857
    Abstract: A method and apparatus for actively cooling the battery pack of an electric vehicle after the vehicle has been turned off, thereby limiting the adverse effects of temperature on battery life, are provided. Different battery pack cooling techniques are provided, thus allowing the cooling technique used in a particular instance to be selected not only based on the thermal needs of the battery pack, but also on the thermal capacity and energy requirements of the selected approach.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 21, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Clay Hajime Kishiyama