Patents by Inventor Clayton Cooper

Clayton Cooper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11999129
    Abstract: A dunnage producing system is disclosed. The system comprises a material feed section configured to feed a sheet stock material into the system to convert it into a dunnage product. The system further comprises a drive belt having a plurality of lugs fixed on the drive belt configured to engage one or more die-cut openings in the sheet stock or roll stock material. The system further comprises one or more folding mandrels and a glue feed section. The folding mandrels capture the engaged sheet stock or roll stock material between the drive belt and folding mandrels. The glue feed section comprises a tank loaded with pre-melted adhesive material, a hose to transfer the pre-melted adhesive material, and a dispensing nozzle to pump the melted adhesive material to the sheet stock material. A controller then receives measurement information and controls the functions of the system to produce dunnage product.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: June 4, 2024
    Inventor: Clayton Cooper
  • Patent number: 11970994
    Abstract: A Brayton cycle engine including a longitudinal wall extended along a lengthwise direction. The longitudinal wall defines a gas flowpath of the engine. An inner wall assembly is extended from the longitudinal wall into the gas flowpath. The inner wall assembly defines a detonation combustion region in the gas flowpath upstream of the inner wall assembly.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: April 30, 2024
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Patent number: 11970993
    Abstract: A Brayton cycle engine and method for operation. The engine includes an inner wall assembly and an upstream wall assembly each extended from a longitudinal wall into a gas flowpath. An actuator adjusts a depth of the detonation combustion region into the gas flowpath between the inner wall assembly and the upstream wall assembly. The engine flows an oxidizer through the gas flowpath and the inner wall captures a portion of the oxidizer. The engine further adjusts the captured flow of oxidizer via the upstream wall and flows a first flow of fuel to the captured flow of oxidizer to produce rotating detonation gases. The engine flows the detonation gases downstream and to mix with the flow of oxidizer, and flows and burns a second flow of fuel to the detonation gases/oxidizer mixture to produce thrust.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: April 30, 2024
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Patent number: 11959441
    Abstract: A Brayton cycle engine including a longitudinal wall extended along a lengthwise direction. The longitudinal wall defines a gas flowpath of the engine. An inner wall assembly is extended from the longitudinal wall into the gas flowpath. The inner wall assembly defines a detonation combustion region in the gas flowpath upstream of the inner wall assembly.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: April 16, 2024
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Patent number: 11686474
    Abstract: A gas turbine engine may include a combustion section having a fuel nozzle, a swirler, and a ferrule configured to mount and center the fuel nozzle with the swirler. The combustion section may further include a damper on a cold side of the combustion section. The damper may have an acoustic cavity, a damper neck, and a cavity feed hole. The damper may operate as Helmholtz cavity to absorb a hydrodynamic or acoustic instability present in a region within the swirler.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 27, 2023
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kwanwoo Kim, Clayton Cooper, Steven Vise, Shai Birmaher, Pradeep Naik, Andrew Wickersham
  • Publication number: 20230109659
    Abstract: A dunnage producing system is disclosed. The system comprises a material feed section configured to feed a sheet stock material into the system to convert it into a dunnage product. The system further comprises a drive belt having a plurality of lugs fixed on the drive belt configured to engage one or more die-cut openings in the sheet stock or roll stock material. The system further comprises one or more folding mandrels and a glue feed section. The folding mandrels capture the engaged sheet stock or roll stock material between the drive belt and folding mandrels. the glue feed section comprises a tank loaded with pre-melted adhesive material, a hose to transfer the post melted adhesive materials, and a dispensing nozzle to pump the melted adhesive material to the sheet stock material. A controller then receives measurement information and control the functions of the system to produce dunnage product.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 6, 2023
    Inventor: Clayton Cooper
  • Publication number: 20220282870
    Abstract: A gas turbine engine may include a combustion section having a fuel nozzle, a swirler, and a ferrule configured to mount and center the fuel nozzle with the swirler. The combustion section may further include a damper on a cold side of the combustion section. The damper may have an acoustic cavity, a damper neck, and a cavity feed hole. The damper may operate as Helmholtz cavity to absorb a hydrodynamic or acoustic instability present in a region within the swirler.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Inventors: Kwanwoo Kim, Clayton Cooper, Steven Vise, Shai Birmaher, Pradeep Naik, Andrew Wickersham