Patents by Inventor Clayton Kostelecky

Clayton Kostelecky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6855749
    Abstract: Polymer nanocomposite implants with nanofillers and additives are described. The nanofillers described can be any composition with the preferred composition being those composing barium, bismuth, cerium, dysprosium, europium, gadolinium, hafnium, indium, lanthanum, neodymium, niobium, praseodymium, strontium, tantalum, tin, tungsten, ytterbium, yttrium, zinc, and zirconium. The additives can be of any composition with the preferred form being inorganic nanopowders comprising aluminum, calcium, gallium, iron, lithium, magnesium, silicon, sodium, strontium, titanium. Such nanocomposites are particularly useful as materials for biological use in applications such as drug delivery, biomed devices, bone or dental implants.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: February 15, 2005
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20040180203
    Abstract: Nanoscale materials with domain sizes less than 100 nanometers and unusual shapes and morphologies are disclosed. A broad approach for manufacturing oxide and non-oxide nanomaterials with aspect ratio different than 1.0 is presented. Methods for engineering and manufacturing nanomaterials' size, shape, surface area, morphology, surface characteristics, surface composition, distribution, and degree of agglomeration are discussed. The methods taught includes the use of surfactants, dispersants, emulsifying agents in order to prepare precursors, which are then processed into novel nanoscale particle morphologies.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20040139888
    Abstract: Printing inks and pastes are disclosed that comprise of nanofillers with domain size less than 100 nanometers thereby exhibiting quantum confinement effects. The printing formulations comprise of nanowhiskers, nanorods, fibers, plates and powders. These printing formulations are useful for preparing nanoelectronics, electrodes and nanotechnology-enabled devices and products. The nanofillers composition taught include inorganic, metallic, organic, oxides, borides, nitrides, carbides, halides, sulfides, alloys and chalcogenides.
    Type: Application
    Filed: October 6, 2003
    Publication date: July 22, 2004
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20040108628
    Abstract: Nanostructured devices with a domain size less than 500 nanometers and low cost manufacturing methods for preparing these are provided. Applications of nanostructured binary oxides, ternary oxides, quaternary oxides, polyatomic forms of oxides, carbides, nitrides, borides, chalcogenides, halides, silicides and phosphides.
    Type: Application
    Filed: May 22, 2003
    Publication date: June 10, 2004
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Patent number: 6737463
    Abstract: Coated nanoparticles are used for composites and media. Exemplary applications include magnetic applications involving a solid matrix material and a nanostructured magnetic material.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: May 18, 2004
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au, Anthony Vigliotti
  • Publication number: 20030212179
    Abstract: An ink prepared using inorganic nanofillers with modified properties because of the powder size being below 100 nanometers. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated, un-coated, whisker type fillers are included. The nanofillers taught comprise of elements from the group actinium, aluminum, antimony, arsenic, barium, beryllium, bismuth, carbon, cadmium, calcium, cerium, cesium, cobalt, copper, dysprosium, erbium, europium, gadolinium, gallium, gold, hafnium, hydrogen, indium, iridium, iron, lanthanum, lithium, magnesium, manganese, mendelevium, mercury, molybdenum, neodymium, neptunium, nickel, niobium, osmium, nitrogen, oxygen, palladium, platinum, potassium, praseodymium, promethium, protactinium, rhenium, rubidium, scandium, silver, sodium, strontium, tantalum, terbium, thallium, thorium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zinc, and zirconium.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 13, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20030209057
    Abstract: A pigment prepared using nanofillers with modified properties because of the powder size being below 100 nanometers. Blue, yellow and brown pigments are illustrated. Nanoscale coated, un-coated, nanorods type fillers are included. The pigment nanopowders taught comprise one or more elements from the group actinium, antimony, aluminum, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, cobalt, copper, dysprosium, erbium, europium, gadolinium, gallium, gold, hafnium, hydrogen, indium, iridium, iron, lanthanum, lithium, magnesium, manganese, mendelevium, mercury, molybdenum, neodymium, neptunium, nickel, niobium, nitrogen, oxygen, osmium, palladium, platinum, potassium, praseodymium, promethium, protactinium, rhenium, rubidium, scandium, silver, sodium, strontium, sulfur, selenium, tantalum, terbium, thallium, thorium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zinc, and zirconium.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 13, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20030207978
    Abstract: Nanocomposites from nanofillers with preferred form of whiskers, rods, plates and fibers are disclosed. The matrix composition described includes polymers, ceramics and metals. The fillers composition disclosed include inorganic, organic and metallic. These nanocomposites are useful in wide range of applications given their unusual properties such as refractive index, transparency to light, reflection characteristics, resistivity, permittivity, permeability, coercivity, B-H product, magnetic hysteresis, breakdown voltage, skin depth, curie temperature, dissipation factor, work function, band gap, electromagnetic shielding effectiveness, radiation hardness, chemical reactivity, thermal conductivity, temperature coefficient of an electrical property, voltage coefficient of an electrical property, thermal shock resistance, biocompatibility, and wear rate.
    Type: Application
    Filed: May 30, 2003
    Publication date: November 6, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20030207976
    Abstract: Methods for preparing nanocomposites with thermal properties modified by powder size below 100 nanometers. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated, un-coated, whisker type fillers are taught. Thermal nanocomposite layers may be prepared on substrates.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 6, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au, Anthony Vigliotti
  • Publication number: 20030207975
    Abstract: Biomedical nanocomposite implants having both low-loaded and highly-loaded nanocomposites. A matrix and nanofillers are provided wherein the nanofillers are dispersed in the matrix to form a composite. Nanoscale coated and un-coated fillers are used. Methods for preparing biomedical nanocomposite implants are also illustrated.
    Type: Application
    Filed: April 28, 2003
    Publication date: November 6, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky
  • Publication number: 20030207977
    Abstract: Methods for preparing optical filter nanocomposites from nanopowders. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated and un-coated fillers may be used. Nanocomposite filter layers may be prepared on substrates. Gradient nanocomposites for filters are discussed.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 6, 2003
    Inventors: Tapesh Yadva, Clayton Kostelecky
  • Patent number: 6641775
    Abstract: Methods for lowering processing and raw material costs are disclosed. Specifically, the use of nanostructured powders is disclosed for faster and lower sintering temperatures whereby electrodes currently employing platinum can be substituted with lower melting point metals and alloys.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: November 4, 2003
    Assignee: NanoProducts Corporation
    Inventors: Anthony Vigliotti, Tapesh Yadav, Clayton Kostelecky, Carrie Wyse
  • Publication number: 20030199624
    Abstract: Methods for preparing low resistivity nanocomposite layers that simultaneously offer optical clarity, wear resistance and superior functional performance. Nanofillers and a substance having a polymer are mixed. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated and un-coated fillers may be used. Nanocomposite films may be coated on substrates.
    Type: Application
    Filed: May 9, 2003
    Publication date: October 23, 2003
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au, Anthony Vigliotti
  • Patent number: 6514453
    Abstract: This invention describes a method of rapidly monitoring the temperature of a medium and a method of preparing a quantum confined device that can enable such measurements. The monitoring principle uses changes in impedance of nanostructured devices, i.e. devices in which one or more materials have the domain size precision engineered to less than 500 nanometers, preferably to dimensions less than the domain sizes where quantum confinement effects become significant and modify the electrical or thermal properties of the materials. The invention can be used to monitor absolute values of and changes in temperature of gases, inorganic and organic liquids, solids, suspensions, and mixtures of one or more of the said phases. The invention can be used to monitor radiation, power, heat and mass flow, charge and momentum flow, and phase transformation.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: February 4, 2003
    Assignee: NanoProducts Corporation
    Inventors: Anthony Vigliotti, Tapesh Yadav, Clayton Kostelecky, Carrie Wyse
  • Publication number: 20020188052
    Abstract: A magnetic material having a magnetic layer on a surface of a tape wherein the magnetic layer comprises a solid matrix material and a nanostructured magnetic material.
    Type: Application
    Filed: May 10, 2002
    Publication date: December 12, 2002
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au, Anthony Vigliotti
  • Publication number: 20020063365
    Abstract: Methods for lowering processing and raw material costs are disclosed. Specifically, the use of nanostructured powders is disclosed for faster and lower sintering temperatures whereby electrodes currently employing platinum can be substituted with lower melting point metals and alloys.
    Type: Application
    Filed: December 3, 2001
    Publication date: May 30, 2002
    Inventors: Anthony Vigliotti, Tapesh Yadav, Clayton Kostelecky, Carrie Wyse
  • Publication number: 20020014182
    Abstract: A nanocomposite structure comprising a nanostructured filler or carrier intimately mixed with a matrix, and methods of making such a structure. The nanostructured filler has a domain size sufficiently small to alter an electrical, magnetic, optical, electrochemical, chemical, thermal, biomedical, or tribological property of either filler or composite by at least 20%.
    Type: Application
    Filed: February 20, 2001
    Publication date: February 7, 2002
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au, Anthony Vigliotti
  • Publication number: 20010009314
    Abstract: This invention describes a method of rapidly monitoring the temperature of a medium and a method of preparing a quantum confined device that can enable such measurements. The monitoring principle uses changes in impedance of nanostructured devices, i.e. devices in which one or more materials have the domain size precision engineered to less than 500 nanometers, preferably to dimensions less than the domain sizes where quantum confinement effects become significant and modify the electrical or thermal properties of the materials. The invention can be used to monitor absolute values of and changes in temperature of gases, inorganic and organic liquids, solids, suspensions, and mixtures of one or more of the said phases. The invention can be used to monitor radiation, power, heat and mass flow, charge and momentum flow, and phase transformation.
    Type: Application
    Filed: February 17, 1998
    Publication date: July 26, 2001
    Inventors: ANTHONY VIGLIOTTI, TAPESH YADAV, CLAYTON KOSTELECKY, CARRIE WYSE
  • Patent number: 6228904
    Abstract: A nanocomposite structure comprising a nanostructured filler or carrier intimately mixed with a matrix, and methods of making such a structure. The nanostructured filler has a domain size sufficiently small to alter an electrical, magnetic, optical, electrochemical, chemical, thermal, biomedical, or tribological property of either filler or composite by at least 20%.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: May 8, 2001
    Assignee: Nanomaterials Research Corporation
    Inventors: Tapesh Yadav, Clayton Kostelecky, Evan Franke, Bijan Miremadi, Ming Au