Patents by Inventor Clement Jacob

Clement Jacob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153541
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Patent number: 11915777
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: February 27, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Patent number: 11825662
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: November 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11690216
    Abstract: An example apparatus includes a first source/drain region and a second source/drain region formed in a substrate. The first source/drain region and the second source/drain region are separated by the channel. The example apparatus further includes a gate separated from the channel by a dielectric material and an access line formed in a high aspect ratio trench connected to the gate. The access line includes a first titanium nitride (TiN) material formed in the trench, a metal material formed over the first TiN material, and a second TiN material formed over the metal material. The example apparatus further includes a sense line coupled to the first source/drain region and a storage node coupled to the second source/drain region.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 27, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Clement Jacob
  • Patent number: 11515147
    Abstract: A material deposition system comprises a dopant source containing at least one dopant precursor material, an inert gas source containing at least one noble gas, and a physical vapor deposition apparatus in selective fluid communication with the dopant source and the inert gas source. The physical vapor deposition apparatus comprises a housing structure, a target electrode, and a substrate holder. The housing structure is configured and positioned to receive at least one feed fluid stream comprising the at least one dopant precursor material and the at least one noble gas. The target electrode is within the housing structure and is in electrical communication with a signal generator. The substrate holder is within the housing structure and is spaced apart from the target electrode. A method of forming a microelectronic device, a microelectronic device, a memory device, and an electronic system are also described.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 29, 2022
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Clement Jacob, Richard L. Elliott, Christopher W. Petz
  • Publication number: 20220358971
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: February 10, 2022
    Publication date: November 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Patent number: 11282548
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: March 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Publication number: 20210343732
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11101274
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir. Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 24, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210183866
    Abstract: An example apparatus includes a first source/drain region and a second source/drain region formed in a substrate. The first source/drain region and the second source/drain region are separated by the channel. The example apparatus further includes a gate separated from the channel by a dielectric material and an access line formed in a high aspect ratio trench connected to the gate. The access line includes a first titanium nitride (TiN) material formed in the trench, a metal material formed over the first TiN material, and a second TiN material formed over the metal material. The example apparatus further includes a sense line coupled to the first source/drain region and a storage node coupled to the second source/drain region.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Fatma Arzum Simsek-Ege, Clement Jacob
  • Publication number: 20210175239
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210175072
    Abstract: A material deposition system comprises a dopant source containing at least one dopant precursor material, an inert gas source containing at least one noble gas, and a physical vapor deposition apparatus in selective fluid communication with the dopant source and the inert gas source. The physical vapor deposition apparatus comprises a housing structure, a target electrode, and a substrate holder. The housing structure is configured and positioned to receive at least one feed fluid stream comprising the at least one dopant precursor material and the at least one noble gas. The target electrode is within the housing structure and is in electrical communication with a signal generator. The substrate holder is within the housing structure and is spaced apart from the target electrode. A method of forming a microelectronic device, a microelectronic device, a memory device, and an electronic system are also described.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 10, 2021
    Inventors: Clement Jacob, Richard L. Elliott, Christopher W. Petz