Patents by Inventor Clement R. Yonker

Clement R. Yonker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10464100
    Abstract: A system and method are disclosed for coating surfaces of expandable medical devices with composite coatings. Coatings are composed of various materials including, e.g., polymers and drugs. Transfer of the coatings within a patient or other host forms a drug-eluting coating that delivers time-released drugs over time for treatment of a medical condition.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: November 5, 2019
    Assignees: Micell Technologies, Inc., Battelle Memorial Institute
    Inventors: Dean W. Matson, Clement R. Yonker, John L. Fulton, George S. Deverman, Barbara J. Tarasevich, Wendy J. Shaw, Leonard S. Fifield, Krys Wallace, C. Douglas Taylor, James B. McClain
  • Patent number: 9687864
    Abstract: This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: June 27, 2017
    Assignee: Battelle Memorial Institute
    Inventors: John L. Fulton, George S. Deverman, Dean W. Matson, Clement R. Yonker, C. Douglas Taylor, James B. McClain, Joseph M. Crowley
  • Patent number: 8980210
    Abstract: A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: March 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: David J. Heldebrant, Clement R. Yonker, Phillip K. Koech
  • Publication number: 20150040827
    Abstract: This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
    Type: Application
    Filed: June 20, 2014
    Publication date: February 12, 2015
    Inventors: John L. Fulton, George S. Deverman, Dean W. Matson, Clement R. Yonker, C. Douglas Taylor, James B. McClain, Joseph M. Crowley
  • Publication number: 20150024116
    Abstract: A system and method are disclosed for coating surfaces of expandable medical devices with composite coatings. Coatings are composed of various materials including, e.g., polymers and drugs. Transfer of the coatings within a patient or other host forms a drug-eluting coating that delivers time-released drugs over time for treatment of a medical condition.
    Type: Application
    Filed: May 30, 2012
    Publication date: January 22, 2015
    Inventors: Dean W. Matson, Clement R. Yonker, John L. Fulton, George S. Deverman, Barbara J. Tarasevich, Wendy J. Shaw, Leonard S. Fifield, Krys Wallace, C. Douglas Taylor, James B. McClain
  • Patent number: 8834913
    Abstract: A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: September 16, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Wendy J. Shaw, Clement R. Yonker, John L. Fulton, Barbara J. Tarasevich, James B. McClain, Doug Taylor
  • Patent number: 8795762
    Abstract: This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 5, 2014
    Assignee: Battelle Memorial Institute
    Inventors: John L. Fulton, George S. Deverman, Dean W. Matson, Clement R. Yonker, C. Douglas Taylor, James B. McClain, Joseph M. Crowley
  • Publication number: 20110238161
    Abstract: This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Applicants: BATTELLE MEMORIAL INSTITUTE, MICELL TECHNOLOGIES
    Inventors: John L. Fulton, George S. Deverman, Dean W. Matson, Clement R. Yonker, C. Douglas Taylor, James B. McClain, Joseph M. Crowley
  • Publication number: 20110159069
    Abstract: A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.
    Type: Application
    Filed: December 28, 2009
    Publication date: June 30, 2011
    Inventors: Wendy J. Shaw, Clement R. Yonker, John L. Fulton, Barbara J. Tarasevich, James B. McClain, Doug Taylor
  • Patent number: 7799299
    Abstract: Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: September 21, 2010
    Assignee: Batelle Memorial Institute
    Inventors: David J. Heldebrant, Clement R. Yonker
  • Publication number: 20090220397
    Abstract: A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogues of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.
    Type: Application
    Filed: April 22, 2009
    Publication date: September 3, 2009
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: David J. Heldebrant, Clement R. Yonker, Phillip K. Koech
  • Publication number: 20090136402
    Abstract: Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.
    Type: Application
    Filed: January 27, 2009
    Publication date: May 28, 2009
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: David J. Heldebrant, Clement R. Yonker
  • Patent number: 7482289
    Abstract: Methods and an apparatus are disclosed for depositing tantalum metal films in next-generation solvent fluids on substrates and/or deposition surfaces useful, e.g., as metal seed layers. Deposition involves low valence oxidation state metal precursors soluble in liquid and/or compressible solvent fluids at liquid, near-critical, or supercritical conditions for the mixed precursor solutions. Metal film deposition is effected via thermal and/or photolytic activation of the metal precursors. The invention finds application in fabrication and processing of semiconductor, metal, polymer, ceramic, and like substrates or composites.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 27, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Clement R. Yonker, Dean W. Matson, John T Bays
  • Publication number: 20080245304
    Abstract: A system is described for selectively depositing materials to surfaces at preselected locations and at controlled thicknesses. Materials can be further selectively deposited to sub-surfaces of composite or structured silicon wafers, e.g., for the deposition of barrier films on silicon wafer surfaces, e.g., to fill substrate feature patterns (vias). The invention finds application in such commercial processes as semiconductor chip manufacturing. The system is envisioned to provide alternatives to, or decreased need for, chemical mechanical planarization in semiconductor chip manufacturing.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 9, 2008
    Inventors: Clement R. Yonker, Dean W. Matson, Daniel J. Gaspar, George S. Deverman
  • Patent number: 7402517
    Abstract: Methods are disclosed for depositing materials selectively and controllably from liquid, near-critical, and/or supercritical fluids to a substrate or surface controlling the location and/or thickness of material(s) deposited to the surface or substrate. In one exemplary process, metals are deposited selectively filling feature patterns (e.g., vias) of substrates. The process can be further used to control deposition of materials on sub-surfaces of composite or structured silicon wafers, e.g., for the deposition of barrier films on silicon wafer surfaces. Materials include, but are not limited to, overburden materials, metals, non-metals, layered materials, organics, polymers, and semiconductor materials. The instant invention finds application in such commercial processes as semiconductor chip manufacturing.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 22, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Clement R. Yonker, Dean W. Matson, Daniel J. Gaspar, George S. Deverman
  • Publication number: 20080050916
    Abstract: Methods and an apparatus are disclosed for depositing tantalum metal films in next-generation solvent fluids on substrates and/or deposition surfaces useful, e.g., as metal seed layers. Deposition involves low valence oxidation state metal precursors soluble in liquid and/or compressible solvent fluids at liquid, near-critical, or supercritical conditions for the mixed precursor solutions. Metal film deposition is effected via thermal and/or photolytic activation of the metal precursors. The invention finds application in fabrication and processing of semiconductor, metal, polymer, ceramic, and like substrates or composites.
    Type: Application
    Filed: August 25, 2006
    Publication date: February 28, 2008
    Applicant: Battelle Memorial Institute
    Inventors: Clement R. Yonker, Dean W. Matson, John T. Bays
  • Patent number: 6749902
    Abstract: A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The Tg of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: June 15, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Clement R. Yonker, John L. Fulton
  • Patent number: 6729185
    Abstract: An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: May 4, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Tom Autrey, Clement R. Yonker
  • Publication number: 20030222018
    Abstract: A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The Tg of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 4, 2003
    Applicant: Battelle Memorial Institute
    Inventors: Clement R. Yonker, John L. Fulton
  • Publication number: 20020026833
    Abstract: An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.
    Type: Application
    Filed: January 19, 2001
    Publication date: March 7, 2002
    Inventors: Tom Autrey, Clement R. Yonker