Patents by Inventor Clifford C. Stow

Clifford C. Stow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110070811
    Abstract: The present invention generally relates to apparatus and method for recycling both polishing slurry and rinse water from CMP processes. The present invention also relates to rheology measurements and agglomeration prevention using centrifugal pumps.
    Type: Application
    Filed: March 23, 2010
    Publication date: March 24, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Andreas Neuber, Phil Chandler, Clifford C. Stow, Daniel O. Clark, Michael Kiefer, Jamie Stuart Leighton
  • Publication number: 20110023908
    Abstract: Methods and apparatus for recovering hydrogen fluoride (HF) are provided herein. In some embodiments, an apparatus includes a system for processing substrates, including a process chamber for processing a substrate; a fluorine generator coupled to the process chamber to provide fluorine (F2) thereto; an abatement system coupled to the process chamber to abate fluorine-containing effluents exhausted from the process chamber and to convert at least a portion of the fluorine-containing effluents into hydrogen fluoride (HF); an HF recovery system configured to at least one of collect, purify, or concentrate the HF converted by the abatement system; and a conduit for providing the recovered hydrogen fluoride (HF) to the fluorine generator or another application in the manufacturing process.
    Type: Application
    Filed: July 16, 2010
    Publication date: February 3, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ANDREAS NEUBER, PHIL CHANDLER, CLIFFORD C. STOW, DANIEL O. CLARK, MICHAEL KIEFER
  • Publication number: 20080213496
    Abstract: Methods of applying specialty ceramic materials to semiconductor processing apparatus, where the specialty ceramic materials are resistant to halogen-comprising plasmas. The specialty ceramic materials contain at least one yttrium oxide-comprising solid solution. Some embodiments of the specialty ceramic materials have been modified to provide a resistivity which reduces the possibility of arcing within a semiconductor processing chamber.
    Type: Application
    Filed: August 2, 2007
    Publication date: September 4, 2008
    Inventors: Jennifer Y. Sun, Shun Jackson Wu, Senh Thach, Ananda Kumar, Robert W. Wu, Hong Wang, Yixing Lin, Clifford C. Stow, Jim Dempster, Li Xu, Kenneth S. Collins, Ren-Guan Duan, Thomas Graves, Xiaoming He, Jie Yuan
  • Patent number: 7055732
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: June 6, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Patent number: 7048814
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film can be controlled by maintaining the content of mobile impurities within a specific range and controlling the particulate size and distribution of the mobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: May 23, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yixing Lin, Brian T. West, Hong Wang, Shun Jackson Wu, Jennifer Y Sun, Clifford C. Stow, Senh Thach
  • Patent number: 7033447
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film, can be controlled by maintaining the content of mobile and nonmobile impurities within a specific range and controlling the particulate size and distribution of the mobile and nonmobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: April 25, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yixing Lin, Brian T West, Shun Jackson Wu, Clifford C Stow, Senh Thach, Hong Wang, Jennifer Y Sun
  • Patent number: 6902628
    Abstract: In a method of cleaning and refurbishing a process chamber component having a metal coating having a surface thereon, the surface of the metal coating is immersed in an acidic solution to remove at least a portion of the process deposits from the surface. Thereafter, the surface of the metal coating is immersed in a basic solution to remove substantially all the metal coating. The component may optionally be bead blasting to roughen a surface of the component, and the metal coating may be re-formed.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 7, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Hong Wang, Yongxiang He, Clifford C Stow
  • Patent number: 6899798
    Abstract: Disclosed herein is a method of roughening a ceramic surface by forming mechanical interlocks in the ceramic surface by a chemical etching process, a thermal etching process, or a laser micromachining process. Also disclosed herein are components for use in semiconductor processing chambers (in particular, a deposition ring for use in a PVD chamber) which have at least one ceramic surface having mechanical interlocks formed therein by chemical etching, thermal etching, or laser micromachining. Ceramic surfaces which have been roughened according to the chemical etching, thermal etching, or laser micromachining process of the invention are less brittle and damaged than ceramic surfaces which are roughened using conventional grit blasting techniques. The method of the invention results in a roughened ceramic surface which provides good adherence to an overlying sacrificial layer (such as aluminum).
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Edwin Charles Weldon, Yongxiang He, Hong Wang, Clifford C. Stow
  • Publication number: 20040224171
    Abstract: A uniform, controllable method for electrochemically roughening an aluminum-comprising surface to be used in a semiconductor processing apparatus is disclosed Typically the aluminum-comprising surface is aluminum or an aluminum alloy. The method involves immersing an aluminum-comprising surface in an HCl solution having a concentration ranging from about 1, volume % to about 5 volume %, at a temperature within the range of about 45° C. to about 80° C., then applying an electrical charge having a charge density ranging from about 80 amps/ft.2 to about 250 amps/ft.2 for a time period ranging from about 4 minutes to about 25 minutes. A chelating agent may be added to enhance the roughening process. The electrochemical roughening method can be used on aluminum alloys in general, including but not limited to 6061 and LP. The electrochemical roughening provides a smoothly rolling surface which does not entrap particles and which provides increased surface area for semiconductor process byproduct adhesion.
    Type: Application
    Filed: June 10, 2004
    Publication date: November 11, 2004
    Inventors: Jennifer Y. Sun, Clifford C. Stow, Senh Thach
  • Patent number: 6776873
    Abstract: To further enhance the chamber material performance of anodized aluminum alloy materials against fluorine and oxygen plasma attack, a ceramic-based surface coating, high purity yttrium oxide coating, is provided on the anodized aluminum alloy parts.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: August 17, 2004
    Inventors: Jennifer Y Sun, Shun Jackson Wu, Senh Thach, Ananda H Kumar, Robert W Wu, Hong Wang, Yixing Lin, Clifford C Stow
  • Publication number: 20040099285
    Abstract: In a method of cleaning and refurbishing a process chamber component having a metal coating having a surface thereon, the surface of the metal coating is immersed in an acidic solution to remove at least a portion of the process deposits from the surface. Thereafter, the surface of the metal coating is immersed in a basic solution to remove substantially all the metal coating. The component may optionally be bead blasting to roughen a surface of the component, and the metal coating may be reformed.
    Type: Application
    Filed: November 25, 2002
    Publication date: May 27, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Hong Wang, Yongxiang He, Clifford C. Stow
  • Patent number: 6713188
    Abstract: We have discovered that the formation of particulate inclusions at the surface and the interior of an aluminum alloy article interferes with the performance of the article when a surface of the article is protected by an anodized coating. We have also discovered that the formation of such particulate inclusions can be controlled to a large extent by controlling the concentration of particular impurities present in the alloy used to fabricate the aluminum alloy article.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 30, 2004
    Assignee: Applied Materials, Inc
    Inventors: Shun Wu, Clifford C. Stow, Hong Wang, Yixing Lin, Brian West
  • Publication number: 20040041004
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 4, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Patent number: 6659331
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: December 9, 2003
    Assignee: Applied Materials, Inc
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Publication number: 20030224188
    Abstract: We have discovered that the formation of particulate inclusions at the surface and the interior of an aluminum alloy article interferes with the performance of the article when a surface of the article is protected by an anodized coating. We have also discovered that the formation of such particulate inclusions can be controlled to a large extent by controlling the concentration of particular impurities present in the alloy used to fabricate the aluminum alloy article.
    Type: Application
    Filed: January 27, 2003
    Publication date: December 4, 2003
    Inventors: Shun Wu, Clifford C. Stow, Hong Wang, Yixing Lin, Brian West
  • Publication number: 20030205479
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film, can be controlled by maintaining the content of mobile and nonmobile impurities within a specific range and controlling the particulate size and distribution of the mobile and nonmobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 6, 2003
    Inventors: Yixing Lin, Brian T. West, Shun Jackson Wu, Clifford C. Stow, Senh Thach, Hong Wang, Jennifer Y. Sun
  • Publication number: 20030160085
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 28, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Publication number: 20030150530
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film can be controlled by maintaining the content of mobile impurities within a specific range and controlling the particulate size and distribution of the mobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yixing Lin, Brian T. West, Hong Wang, Shun Jackson Wu, Jennifer Y. Sun, Clifford C. Stow, Senh Thach
  • Publication number: 20030116276
    Abstract: Disclosed herein is a method of roughening a ceramic surface by forming mechanical interlocks in the ceramic surface by a chemical etching process, a thermal etching process, or a laser micromachining process. Also disclosed herein are components for use in semiconductor processing chambers (in particular, a deposition ring for use in a PVD chamber) which have at least one ceramic surface having mechanical interlocks formed therein by chemical etching, thermal etching, or laser micromachining. Ceramic surfaces which have been roughened according to the chemical etching, thermal etching, or laser micromachining process of the invention are less brittle and damaged than ceramic surfaces which are roughened using conventional grit blasting techniques. The method of the invention results in a roughened ceramic surface which provides good adherence to an overlying sacrificial layer (such as aluminum).
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Edwin Charles Weldon, Yongxiang He, Hong Wang, Clifford C. Stow
  • Publication number: 20030047464
    Abstract: A uniform, controllable method for electrochemically roughening an aluminum-comprising surface to be used in a semiconductor processing apparatus is disclosed Typically the aluminum-comprising surface is aluminum or an aluminum alloy. The method involves immersing an aluminum-comprising surface in an HCl solution having a concentration ranging from about 1 volume % to about 5 volume %, at a temperature within the range of about 45° C. to about 80° C., then applying an electrical charge having a charge density ranging from about 80 amps/ft.2 to about 250 amps/ft.2 for a time period ranging from about 4 minutes to about 25 minutes. A chelating agent may be added to enhance the roughening process. The electrochemical roughening method can be used on aluminum alloys in general, including but not limited to 6061 and LP. The electrochemical roughening provides a smoothly rolling surface which does not entrap particles and which provides increased surface area for semiconductor process byproduct adhesion.
    Type: Application
    Filed: July 27, 2001
    Publication date: March 13, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Clifford C. Stow, Senh Thach