Patents by Inventor Clifford D. Fung

Clifford D. Fung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6030851
    Abstract: A structure and method of fabrication is provided for a micromechanical overrange protected pressure sensor. A pressure sensor having a silicon substrate is provided with a cavity and a deformable diaphragm wherein deflection of the diaphragm in response to pressure is limited by a forward pressure stop. A method is provided for electrodepositing a metal layer which is attached to the substrate adjacent to the diaphragm to provide a reverse pressure stop in response to pressure supplied to the underside of a diaphragm. The metal layer has a relatively low thermal coefficient of expansion and is patterned through use of a photo-resist layer. A previously deposited precision spacer between the diaphragm and reverse pressure stop is removed to provide a precision gap between the reverse pressure stop and the diaphragm.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: February 29, 2000
    Inventors: Paul E. Grandmont, Clifford D. Fung
  • Patent number: 5969591
    Abstract: A single-sided differential pressure sensing chip having a cavity formed in the top surface of a substrate, a deformable diaphragm spanning the cavity, and a pressure passage connecting the top surface of the substrate with the cavity, and a method of making the same are described. A first fluid pressure applied to the top surface of the substrate in the vicinity of the diaphragm exerts a force on the top surface of the diaphragm, and a second fluid pressure applied to the top surface of the substrate near the pressure passage exerts a force on the bottom surface of the diaphragm. The diaphragm deflects in response to the forces exerted upon it, and a sensing element detects the flexing of the diaphragm. The pressure sensing chip can be contained within a housing structure formed of a carrier and a cap.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: October 19, 1999
    Assignee: The Foxboro Company
    Inventor: Clifford D. Fung
  • Patent number: 5681997
    Abstract: A polycrystalline pressure sensor is formed by depositing polycrystalline silicon piezoresistors on a polycrystalline sensing diaphragm. The piezoresistors are arranged in a wheatstone bridge configuration. During operation, an alternating differential signal is applied across the input of the wheatstone bridge. A measured voltage difference between the output terminals of the wheatstone bridge is used to detect imbalance in the electrical piezoresistors that corresponds to pressure applied to the sensor. Pressure is thereby measured.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: October 28, 1997
    Assignee: The Foxboro Company
    Inventors: Edward J. McHale, Clifford D. Fung
  • Patent number: 5672551
    Abstract: A semiconductor pressure sensor utilizes single-crystal silicon piezoresistive gage elements dielectrically isolated by silicon oxide from other such elements, and utilizes an etched silicon substrate with an etch stop. P-type implants form p-type piezoresistive gage elements and form p+ interconnections to connect the sensor to external electrical devices. The diaphragm is made from epitaxially-grown single-crystal silicon. Passivation nitride can be used for additional dielectric isolation. One practice of the invention provides over-range cavity protection, and thus increased robustness, by forming an over-range stop for the diaphragm through localized oxygen ion implantation and etching.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 30, 1997
    Assignee: The Foxboro Company
    Inventor: Clifford D. Fung
  • Patent number: 5589810
    Abstract: A semiconductor pressure sensor utilizes single-crystal silicon piezoresistive gage elements dielectrically isolated by silicon oxide from other such elements, and utilizes an etched silicon substrate. P-type implants form p-type piezoresistive gage elements and form p+ interconnections to connect the sensor to external electrical devices. The diaphragm is made from polysilicon and is deposited on top of the gage elements.
    Type: Grant
    Filed: March 18, 1994
    Date of Patent: December 31, 1996
    Assignee: The Foxboro Company
    Inventor: Clifford D. Fung
  • Patent number: 5438875
    Abstract: An overpressure-protected, differential pressure sensor 37 is formed by depositing diaphragm material 24 over a cavity 23 formed and filled with sacrificial material 22 into a front surface of a substrate. The sacrificial material 22 is then removed to create a free diaphragm. The floor of the cavity 23 defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port 33 is created to allow pressure to be applied to the bottom side of the diaphragm 24. An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap 35 to standoffs 34 placed around the top of the diaphragm. The standoffs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: August 8, 1995
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 5357808
    Abstract: An overpressure-protected, differential pressure sensor (37) is formed by depositing diaphragm material (24) over a cavity (23) formed and filled with sacrificial material (22) into a front surface of a substrate. The sacrificial material (22) is then removed to create a free diaphragm. The floor of the cavity (23) defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port (33) is created to allow pressure to be applied to the bottom side of the diaphragm (24). An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap (35) to stand-offs (34) placed around the top of the diaphragm. The stand-offs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: October 25, 1994
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 5344523
    Abstract: A capacitive differential pressure sensing device with pressure overrange protection and a method of making the same are described. The device employs a doped polysilicon diaphragm overlying a cavity in a doped single crystal silicon wafer having a port extending into the cavity from the opposite side. The cavity floor serves as an overrange protector.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: September 6, 1994
    Assignee: The Foxboro Comany
    Inventors: Clifford D. Fung, Kevin H. L. Chau
  • Patent number: 5323656
    Abstract: A capacitive differential pressure sensing device with pressure overrange protection and a method of making the same are described. The device employs a doped polysilicon diaphragm overlying a cavity in a doped single crystal silicon wafer having a port extending into the cavity from the opposite side. The cavity floor serves as an overrange protector.
    Type: Grant
    Filed: May 12, 1992
    Date of Patent: June 28, 1994
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau
  • Patent number: 5220838
    Abstract: An overpressure-protected, differential pressure sensor (37) is formed by depositing diaphragm material (24) over a cavity (23) formed and filled with sacrificial material (22) into a front surface of a substrate. The sacrificial material (22) is then removed to create a free diaphragm. The floor of the cavity (23) defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port (33) is created to allow pressure to be applied to the bottom side of the diaphragm (24). An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap (35) to standoffs (34) placed around the top of the diaphragm. The standoffs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: March 28, 1991
    Date of Patent: June 22, 1993
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 4761005
    Abstract: Disclosed is a device for generating an analog output signal indicative of an impact to a transducer. The transducer may be mounted on protective equipment utilized in various martial arts fields, such as protective vests and the like or can be mounted on training equipment, such as a heavy bag, striking pad, etc. In a preferred embodiment the transducer is a piezoelectrical signal which is indicative of the amount of deformation. By placing the piezoelectric film on top of a deformable material, in a preferred embodiment sandwiching it in the deformable material, impacts to the deformable material will strain the piezoelectric film generating the signal output. In a further embodiment of the present invention, the piezoelectric transducer is mounted on a target pad and provides an analog output indicative of the characteristics of an object impacting the target pad.
    Type: Grant
    Filed: October 10, 1985
    Date of Patent: August 2, 1988
    Assignee: Barry J. French
    Inventors: Barry J. French, Clifford D. Fung