Patents by Inventor Clifford H. Ray

Clifford H. Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402527
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: August 2, 2022
    Assignee: Magseis FF LLC
    Inventors: Etienne Marc, Clifford H. Ray, James Nelson Thompson
  • Patent number: 11327200
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: May 10, 2022
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 11237285
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: February 1, 2022
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 11131785
    Abstract: Systems and methods for deployment of ocean bottom seismic receivers into a body of water having a surface and a seabed. The system can include a remote operated vehicle (ROV) comprising a first wireless communication device. The system can include a seismic data receiver deployed on the seabed comprising a second wireless communication device. The first wireless communication device can be configured to communicate with the second wireless communication device. The ROV can move to a position adjacent to the seismic data receiver. The ROV can establish a wireless link with the seismic data receiver via the first communication device and second wireless communication device.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: September 28, 2021
    Assignee: Magseis FF LLC
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 11047998
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 29, 2021
    Assignee: Magseis FF LLC
    Inventors: Etienne Marc, Clifford H. Ray, James Nelson Thompson
  • Publication number: 20200174148
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 10670749
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network. Each seismic unit has a power source, a short-range transmitter/receiver disposed within a casing and a geophone disposed within the casing. Each wireless communications unit is formed of an elongated support structure on which is mounted an independent power source, mid-range radio transmitter/receiver; and a short-range transmitter/receiver configured to wirelessly communicate with the short-range transmitter/receiver of the acquisition unit. Preferably, when deployed, the acquisition unit is buried under the surface of the ground, while the wireless communications unit is positioned in the near vicinity of the buried unit so as to vertically protrude above the ground.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: June 2, 2020
    Assignee: Magseis FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 10598808
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 24, 2020
    Assignee: MAGSEIS FF LLC
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 10591624
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 17, 2020
    Assignee: Magseis FF LLC
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20200049848
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 10557958
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 11, 2020
    Assignee: Magseis FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 10539696
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: January 21, 2020
    Assignee: Magseis FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 10502853
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 10, 2019
    Assignee: Magseis FF LLC
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 10473807
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 12, 2019
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20190302287
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 3, 2019
    Inventors: Etienne Marc, Clifford H. Ray, James Nelson Thompson
  • Patent number: 10422908
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: September 24, 2019
    Assignee: Magseis FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20190235127
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20190196037
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Inventors: Etienne Marc, Clifford H. Ray, James Nelson Thompson
  • Patent number: 10281613
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors. The system provides a more stable method of correcting drift in the local time clock.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: May 7, 2019
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 10234579
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 19, 2019
    Assignee: MAGSEIS FF LLC
    Inventors: Etienne Marc, Clifford H. Ray, James Nelson Thompson