Patents by Inventor Clifford Hatcher

Clifford Hatcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10704958
    Abstract: A method for monitoring a high-temperature region of interest in a turbine engine (10) is provided. The method includes providing an internally-cooled stationary vane (12). The method may further include locating at least one monitoring port (14) in the stationary vane and operatively connecting a monitoring instrument (16) to the monitoring port to provide a field of view of a region of interest.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 7, 2020
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Paul J. Zombo, Dennis H. Lemieux, Clifford Hatcher
  • Patent number: 10281712
    Abstract: Internal components of power generation machinery, such as gas turbine engines, are inspected with a spherical, optical-camera inspection system, mounted within a camera housing on a distal end of a compact diameter, single-axis inspection scope. The inspection scope includes nested, non-rotatable telescoping tubes, which define an extension axis. Circumscribing, telescoping tubes have anti-rotation collars, which are in sliding engagement with extension tracks on a circumferential surface of an opposing, nested tube, for ease of extension and retraction of the camera during visual inspections of power generation machinery. The camera is advanced and/or retracted along a scope extension axis by nested, drive tubes, which incorporate at least one external drive screw on a circumscribed drive tube and corresponding female threads formed in a circumscribing drive tube. The spherical camera has a 360-degree field of view, and captures images without rotation about the scope extension axis.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 7, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David Letter, Isaac Piersall, Clifford Hatcher, Jr.
  • Patent number: 10274718
    Abstract: Internal components of power generation machinery, such as gas turbine engines, are inspected with a spherical, optical-camera inspection system, mounted within a camera housing on a distal end of a compact diameter, single-axis inspection scope. The inspection scope includes nested, non-rotatable telescoping tubes, which define an extension axis. Circumscribing, telescoping tubes have anti-rotation collars, which are in sliding engagement with extension tracks on a circumferential surface of an opposing, nested tube, for ease of extension and retraction of the camera during visual inspections of power generation machinery. The camera is advanced and/or retracted along a scope extension axis by nested, drive tubes, which incorporate at least one external drive screw on a circumscribed drive tube and corresponding female threads formed in a circumscribing drive tube. The spherical camera has a 360-degree field of view, and captures images without rotation about the scope extension axis.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 30, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David Letter, Isaac Piersall, Clifford Hatcher, Jr.
  • Patent number: 10222200
    Abstract: Turbine blade-tip clearance is measured in a fully assembled turbine casing by mounting a probe tip of a non-contact displacement probe in an inspection port of a vane cavity at a known distance relative to the inner circumferential surface of the corresponding ring segment. The displacement probe generates displacement samples that are indicative of probe tip distance from the turbine blade tip. Variations in probe distance data are recorded as the blade circumferentially sweeps the turbine casing. A data processing system correlates the distance data with localized blade-tip clearance gap. In some embodiments, blade rotational position data are collected by a rotational position sensor. In those embodiments, the data processing system correlates the distance and rotational position data with localized blade tip gap at angular positions about the turbine casing circumference.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 5, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Clifford Hatcher, Jr., James P. Williams, Mahmood K. Silieti
  • Patent number: 10189045
    Abstract: A blackbody material application system for a turbine. The system includes a blackbody material supply and a moveable hose connected to the blackbody material supply wherein the hose sprays blackbody material onto a selected area within the turbine. The system also includes a rotatable bracket that holds the hose, wherein rotation of the bracket moves the hose toward the selected area within the turbine to enable application of the blackbody material onto the selected area. In addition, the system includes a motor for rotating the bracket and a moveable arm that holds the bracket wherein the bracket is inserted through an opening in the turbine and movement of the arm enables positioning of the bracket and hose in relative close proximity to the selected area suitable for spraying blackbody material onto the selected area.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 29, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Dustin C. Boudin, Clifford Hatcher, Jr., Anand A. Kulkarni, Kevin Licata, David Letter, Alejandro Bancalari
  • Patent number: 10142565
    Abstract: A flash thermography device for generating an infrared image of each of a plurality of rotating turbine components located inside a turbine. The device includes an infrared sensor for detecting thermal energy radiated by each component. The device also includes a borescope having a viewing end located on a longitudinal axis of the borescope. The borescope is positioned in an inspection port to locate the viewing end inside the turbine such that at least one component is within a field of view of the viewing end. In addition, the device includes a flash source that generates a plurality of light pulses corresponding to the number of components that rotate during a single rotation of the rotor, wherein the light pulses are oriented substantially transverse to the longitudinal. Thermal energy radiated from each component is transmitted through the borescope to the infrared sensor to enable generation infrared images.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: November 27, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Dustin C. Boudin, Clifford Hatcher, Jr., Anand A. Kulkarni
  • Publication number: 20180328721
    Abstract: Turbine blade-tip clearance is measured in a fully assembled turbine casing by mounting a probe tip of a non-contact displacement probe in an inspection port of a vane cavity at a known distance relative to the inner circumferential surface of the corresponding ring segment. The displacement probe generates displacement samples that are indicative of probe tip distance from the turbine blade tip. Variations in probe distance data are recorded as the blade circumferentially sweeps the turbine casing. A data processing system correlates the distance data with localized blade-tip clearance gap. In some embodiments, blade rotational position data are collected by a rotational position sensor. In those embodiments, the data processing system correlates the distance and rotational position data with localized blade tip gap at angular positions about the turbine casing circumference.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 15, 2018
    Inventors: CLIFFORD HATCHER, JR., JAMES P. WILLIAMS, Mahmood K. Silieti
  • Patent number: 10119863
    Abstract: A system for automated condition assessment of a turbine component is provided. The system includes a partially enclosed photobox and a controller. The partially enclosed photobox includes a configurable rotational table adapted to carry the turbine component, at least one wall perpendicular to and abutting a horizontal platform upon which the rotational table is carried. The photobox also includes a plurality of cameras configured to be automatically positioned at locations surrounding the turbine component and capture images of the turbine component. The controller communicates with each of the cameras to respectively control the positioning of each camera in order to capture a desired view of the turbine component. At least one of the cameras is an infrared camera configured to perform flash thermography capturing a thermographic image of a portion of the turbine component. The thermographic image is used to assess the condition of the turbine component.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: November 6, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Dustin C. Boudin, Clifford Hatcher, Jr., Anand A. Kulkarni, Ahmed Kamel
  • Patent number: 10113937
    Abstract: A system and method for monitoring a gap size of a gap between a seal holder and an adjacent disk in a compressor section of a gas turbine. An imaging device is used to generate at least one image of the gap, wherein a calibration image of the gap is generated when the gas turbine is in a cold state to provide a calibration gap size. An operational image of the gap is also generated when the gas turbine is in operation to provide an operational gap size. In addition, an enclosure that houses the imaging device is attached to an access port formed in the compressor section to provide a view of the gap for the imaging device. Wear is detected in a hook section of the compressor section when the operational gap size is less than the calibration gap size.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 30, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Arun Meenakshinatha Iyer, Dustin C. Boudin, Clifford Hatcher, Jr.
  • Publication number: 20180283279
    Abstract: A method for removing a combustor component from an assembled turbine engine is provided. The method includes disposing a truss structure in the vicinity of a turbine engine enclosure. The truss structure is mounted to a support surface in the vicinity of the turbine enclosure. A removing means is provided on the truss structure in order to engage with and attach to the combustor component. The removing means is positioned so that the combustor component is accessible to the removing means and then attached to the combustor component. The combustor component is then removed from the assembled turbine engine.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 4, 2018
    Inventors: CLIFFORD HATCHER, JR., JAMES P. WILLIAMS, DOMINICK CALABRIA
  • Publication number: 20180252617
    Abstract: A system and method for monitoring a gap size of a gap between a seal holder and an adjacent disk in a compressor section of a gas turbine. An imaging device is used to generate at least one image of the gap, wherein a calibration image of the gap is generated when the gas turbine is in a cold state to provide a calibration gap size. An operational image of the gap is also generated when the gas turbine is in operation to provide an operational gap size. In addition, an enclosure that houses the imaging device is attached to an access port formed in the compressor section to provide a view of the gap for the imaging device. Wear is detected in a hook section of the compressor section when the operational gap size is less than the calibration gap size.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: Arun Meenakshinatha Iyer, Dustin C. Boudin, Clifford Hatcher, JR.
  • Patent number: 10057513
    Abstract: A flash thermography device for generating an infrared image of a turbine component located inside a turbine. The device includes a flash enclosure having an aperture. A flash source is located in the aperture wherein the flash source generates a light pulse that heats the turbine component. The device also includes an infrared sensor for detecting thermal energy radiated by the turbine component wherein the radiated thermal energy is transmitted through the aperture to the infrared sensor to enable generation of an infrared image of the turbine component.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: August 21, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Dustin C. Boudin, Clifford Hatcher, Jr., Anand A. Kulkarni, Kevin Licata
  • Patent number: 10041371
    Abstract: A robotically articulated inspection scope (56, 69) inserted into a pilot fuel nozzle port (58) of a turbine engine (20) for in-situ measurement of gaps (59) between tips of turbine blades (40A) and the surrounding shroud (44). A non-contact gap measuring device (52) on a distal end (79) of the scope may be navigated through a combustor (28) and transition duct (34) into a position proximate a blade tip gap. The scope may be controlled via computer (68) via a robotic drive (66) affixed to the pilot fuel nozzle port. Multiple scopes may be used to measure gaps (59A-D) at multiple azimuths of the turbine simultaneously. The turbine disk (37) may be rotated on its operating turning gear to sequentially measure each blade at each azimuth. The computer may memorize an interactively navigated path for subsequent automated positioning.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: August 7, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Joshua DeAscanis, David Letter, Alejandro Bancalari, Clifford Hatcher, Jr.
  • Publication number: 20180209296
    Abstract: A robotically articulated inspection scope (56, 69) inserted into a pilot fuel nozzle port (58) of a turbine engine (20) for in-situ measurement of gaps (59) between tips of turbine blades (40A) and the surrounding shroud (44). A non-contact gap measuring device (52) on a distal end (79) of the scope may be navigated through a combustor (28) and transition duct (34) into a position proximate a blade tip gap. The scope may be controlled via computer (68) via a robotic drive (66) affixed to the pilot fuel nozzle port. Multiple scopes may be used to measure gaps (59A-D) at multiple azimuths of the turbine simultaneously. The turbine disk (37) may be rotated on its operating turning gear to sequentially measure each blade at each azimuth. The computer may memorize an interactively navigated path for subsequent automated positioning.
    Type: Application
    Filed: February 6, 2015
    Publication date: July 26, 2018
    Inventors: Joshua DeAscanis, David Letter, Alejandro Bancalari, Clifford Hatcher, Jr.
  • Patent number: 10031096
    Abstract: A system for performing acoustic thermography inspection of a turbine blade while the blade is in place in an assembled turbine. The system includes an acoustic thermography stack with a cap and a frame that the acoustic thermography stack is slidably mounted to, said frame including an end frame portion that allows the blade to be clamped between the cap and the end frame portion. The system also includes an air cylinder that provides force to move the acoustic thermography stack up and down a rail of the frame such that the turbine blade may be clamped between the cap and the end frame portion and then excited using the acoustic thermography stack, and a casing that encases the air cylinder, a portion of the acoustic thermography stack and a portion of the frame.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: July 24, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Joshua DeAscanis, David J. Meek, Robert G. Shannon, Forrest R. Ruhge, James P. Williams, Clifford Hatcher
  • Patent number: 9988925
    Abstract: A laser measurement system for detecting at least one locked blade assembly in a gas turbine. The system includes at least one laser device for emitting a laser beam that impinges on a blade surface of each blade in a row of blade assemblies. The laser beam is also transmitted through a space between adjacent blades to impinge on corresponding internal surfaces of the gas turbine. Further, the system includes a photon detector for detecting a first time period in which first laser energy is reflected from each blade surface and a second time period in which second laser energy is reflected from each internal surface and transmitted through each space. The system also includes a controller for detecting a change in at least one second time period to indicate that a distance between consecutive blades has changed and that at least one locked blade assembly is locked.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 5, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Clifford Hatcher, Jr., Forrest R. Ruhge
  • Publication number: 20180128687
    Abstract: A system for automated condition assessment of a turbine component is provided. The system includes a partially enclosed photobox and a controller. The partially enclosed photobox includes a configurable rotational table adapted to carry the turbine component, at least one wall perpendicular to and abutting a horizontal platform upon which the rotational table is carried. The photobox also includes a plurality of cameras configured to be automatically positioned at locations surrounding the turbine component and capture images of the turbine component. The controller communicates with each of the cameras to respectively control the positioning of each camera in order to capture a desired view of the turbine component. At least one of the cameras is an infrared camera configured to perform flash thermography capturing a thermographic image of a portion of the turbine component. The thermographic image is used to assess the condition of the turbine component.
    Type: Application
    Filed: November 7, 2016
    Publication date: May 10, 2018
    Inventors: Dustin C. Boudin, Clifford Hatcher, Jr., Anand A. Kulkarni, Ahmed Kamel
  • Patent number: 9948835
    Abstract: Internal components of power generation machinery, such as gas turbine engines, are inspected with a spherical optical camera inspection system mounted on a compact diameter, single-axis inspection scope that is capable of insertion within an inspection port or other accessible insertion site. The inspection scope includes nested, non-rotatable telescoping tubes, which define an extension axis. Circumscribing, telescoping tubes have anti-rotation collars, which are in sliding engagement with a mating axial groove on an outer circumferential surface of a circumscribed tube. The camera is advanced and/or retracted along a scope extension axis by nested, drive tubes, which incorporate at least one external drive screw on a circumscribed drive tube and corresponding female threads formed in a circumscribing drive tube. The spherical camera has a 360-degree field of view, and captures images without rotation about the scope extension axis.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: April 17, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Joshua DeAscanis, David Letter, Isaac Piersall, Clifford Hatcher, Jr.
  • Publication number: 20180056315
    Abstract: A blackbody material application system for a turbine. The system includes a blackbody material supply and a moveable hose connected to the blackbody material supply wherein the hose sprays blackbody material onto a selected area within the turbine. The system also includes a rotatable bracket that holds the hose, wherein rotation of the bracket moves the hose toward the selected area within the turbine to enable application of the blackbody material onto the selected area. In addition, the system includes a motor for rotating the bracket and a moveable arm that holds the bracket wherein the bracket is inserted through an opening in the turbine and movement of the arm enables positioning of the bracket and hose in relative close proximity to the selected area suitable for spraying blackbody material onto the selected area.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Dustin C. Boudin, Clifford Hatcher, JR., Anand A. Kulkarni, Kevin Licata, David Letter, Alejandro Bancalari
  • Patent number: 9874109
    Abstract: Gas turbine inlet guide vane ice detection and control systems and methods that utilize active infra-red monitoring of inlet guide vanes, detection of ice formation on the guide vanes and elimination of the ice by altering properties of the gas turbine inlet intake airflow, such as by introducing compressed and/or heated air bled from the turbine. Ice has lower detectable emissivity intensity in the infra-red spectrum than ice-free inlet guide vane surfaces. Ice formation is inhibited by direct monitoring of inlet guide vane icing conditions, rather than by indirect empirical assumptions of ice formation based on atmospheric condition monitoring. Direct monitoring mitigates ice formation in real time without reliance on excessive use of gas turbine compressed or heated air bleed, which enhances turbine operational efficiency.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: January 23, 2018
    Assignee: Siemens Energy, Inc.
    Inventors: Clifford Hatcher, Jr., Forrest R. Ruhge