Patents by Inventor Clint R. Vandergiessen

Clint R. Vandergiessen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8526473
    Abstract: Processing workpieces such as semiconductor wafers or other materials with a laser includes selecting a target to process that corresponds to a target class associated with a predefined temporal pulse profile. The temporal pulse profile includes a first portion that defines a first time duration, and a second portion that defines a second time duration. A method includes generating a laser pulse based on laser system input parameters configured to shape the laser pulse according to the temporal pulse profile, detecting the generated laser pulse, comparing the generated laser pulse to the temporal pulse profile, and adjusting the laser system input parameters based on the comparison.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 3, 2013
    Assignee: Electro Scientific Industries
    Inventors: Brian W. Baird, Clint R. Vandergiessen, Steve Swaringen, Robert Hainsey, Yunlong Sun, Kelly J. Bruland, Andrew Hooper
  • Patent number: 8358671
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: January 22, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Publication number: 20110272388
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Patent number: 7977213
    Abstract: A solution to failure mechanisms caused by mechanical sawing of a mechanical semiconductor workpiece entails use of a laser beam to cut and remove the electrically conductive and low-k dielectric material layers from a dicing street before saw dicing to separate semiconductor devices. A laser beam forms a laser scribe region such as a channel in the electrically conductive and low-k dielectric material layers, the bottom of the channel ending on a laser energy transparent stop layer of silicon oxide lying below all of the electrically conductive and low-k dielectric material layers. The disclosed process entails selection of laser parameters such as wavelength, pulse width, and fluence that cooperate to leave the silicon oxide layer stop layer completely or nearly undamaged. A mechanical saw cuts the silicon oxide layer and all other material layers below it, as well as the substrate, to separate the semiconductor devices.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 12, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Andy E. Hooper, David Barsic, Clint R. Vandergiessen, Haibin Zhang, James N. O'Brien
  • Publication number: 20090242531
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Publication number: 20090245302
    Abstract: Processing workpieces such as semiconductor wafers or other materials with a laser includes selecting a target to process that corresponds to a target class associated with a predefined temporal pulse profile. The temporal pulse profile includes a first portion that defines a first time duration, and a second portion that defines a second time duration. A method includes generating a laser pulse based on laser system input parameters configured to shape the laser pulse according to the temporal pulse profile, detecting the generated laser pulse, comparing the generated laser pulse to the temporal pulse profile, and adjusting the laser system input parameters based on the comparison.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Brian W. Baird, Clint R. Vandergiessen, Steve Swaringen, Robert Hainsey, Yunlong Sun, Kelly J. Bruland, Andrew Hooper