Patents by Inventor Clinton B. Carlisle

Clinton B. Carlisle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8259069
    Abstract: A speckle-based trackball apparatus with an optical architecture employing curved-wavefront illumination beam or a modified imaging lens and aperture configuration is provided. The apparatus includes a trackball configured to be rotated by a user. In the curved-wavefront embodiment, an illuminator is configured to illuminate a spot area of the curved surface of the trackball with a curved-wavefront illumination beam so that an ensemble of optical features used for motion sensing interact with the illumination beam at different phase points as a function of a location within the illuminated spot area on the curved surface of the trackball. In the modified imaging lens and aperture configuration, the aperture is positioned between the back focal plane and the image plane of the imaging lens, and the illuminator may be configured to illuminate a portion of the trackball with a planar-wavefront illumination beam. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: September 4, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle
  • Patent number: 7986603
    Abstract: A holographic data storage (HDS) system and method are provided. Generally, the system includes: a light source for generating a coherent light; beam-forming optics for forming the light into collimated object and reference beams; holographic storage medium; a spatial light modulator (SLM) located in a path of the object beam from the beam-forming optics to the storage medium, the SLM having a number of pixels for encoding data to be stored in the medium into the object beam. Preferably, the SLM can modulate both the amplitude and phase of light from every pixel on the SLM. More preferably, the SLM is also located in a path of the reference beam to the storage medium to modulate the phase of the light to store multiple holographic pages of data in the same physical volume of medium through phase multiplexing. Other embodiments are also described.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 26, 2011
    Assignee: Silicon Light Machines Corporation
    Inventors: Jahja I. Trisnadi, Alexander P. Payne, Clinton B. Carlisle
  • Patent number: 7773070
    Abstract: One embodiment relates to an optical displacement sensor for sensing movement of a data input device across a surface by determining displacement of optical features in a succession of frames. The sensor includes at least an illuminator, telecentric imaging optics on the object (scattering surface) side, and an array of photosensitive elements. The illuminator is configured to illuminate a portion of the surface. The telecentric imaging optics is configured to image the optical features emanating from the illuminated portion of the surface, and the array of photosensitive elements is configured to detect intensity data relating to the optical features imaged by the telecentric imaging optics. Other embodiments are also disclosed.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: August 10, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle, Charles B. Roxlo, David A. Lehoty
  • Patent number: 7755604
    Abstract: In one embodiment, an optical navigation sensor for a computer mouse is designed to be operable on an optically transparent material. The optically transparent material may include a contact surface on which the mouse sits during normal operation. An optically rough tracking surface is provided below the contact surface. The mouse includes a light source that illuminates an area on the contact surface and an area on the tracking surface. The mouse may include a tracking sensor onto which the illuminated area on the tracking surface is imaged to detect mouse displacement. The mouse may also include a lift sensor that picks up specular light reflected from the illuminated area on the contact surface to generate lift information indicative of whether the mouse has been lifted off the contact surface. Tracking of the mouse displacement may be qualified with the lift information.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 13, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle, Yansun Xu
  • Patent number: 7737948
    Abstract: One embodiment relates to a laser positioning device for sensing relative movement between a data input device and a surface by determining displacement of image features in a succession of images of the surface. The device forms a single integrated package, which includes a planar substrate and a transparent encapsulant that also embodies a collimating lens. Both a coherent light source and a sensor array and associated circuitry are configured on the planar substrate. Another embodiment relates to a method of sensing relative movement between a data input device and a surface. Coherent light is emitted from a laser and collimated so as to form a collimated illumination beam with a predetermined diameter, D, and a substantially uniform phase front. A speckle pattern is generated by impingement of the collimated illumination beam on the surface and detected by a sensor array. Other embodiments are also disclosed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 15, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Brett A. Spurlock, Jahja I. Trisnadi, Steven Sanders, Clinton B. Carlisle
  • Patent number: 7728816
    Abstract: One embodiment relates to a method of sensing motion of an optical sensor relative to a surface. A first resolution and a second resolution are set. Measurement signals are obtained from a sensor array, and the motion of the optical sensor relative to the surface is tracked using the measurement signals. The tracking of the motion in a first dimension is performed at the first resolution, and the tracking of the motion in a second dimension is performed at the second resolution. Another embodiment relates to an optical sensor apparatus for sensing motion relative to a surface, wherein the tracking of the motion is performed at a variable resolution along each of two axes. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 1, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Yansun Xu, Brian Todoroff, Jahja I. Trisnadi, Clinton B. Carlisle
  • Patent number: 7567235
    Abstract: One embodiment relates to an optical navigation device. The device includes a lead frame having reference features, a laser, a detector array, and an optical component having alignment features. The laser is attached to the lead frame and positioned in reference to the reference features of the lead frame. The detector array is attached to the lead frame and positioned in reference to the reference features of the lead frame. The optical component is coupled to the lead frame so that its alignment features register to the reference features of the lead frame. In this way, the molded optical component is passively aligned to the laser and the detector array. Other embodiments are also disclosed.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 28, 2009
    Assignee: Cypress Semiconductor Corporation
    Inventors: Brett A. Spurlock, Steven Sanders, Clinton B. Carlisle
  • Patent number: 7459671
    Abstract: An optical sensor and method of using the same is provided for sensing relative movement between the sensor and a surface by detecting changes in optical features of light reflected from the surface. In one embodiment, the sensor includes a two dimensional array of photosensitive elements, the array including at least a first plurality of photosensitive elements arranged and coupled to sense a first combined movement along a first set of at least two non-parallel axes, and a second plurality of photosensitive elements arranged and coupled to sense a second combined movement along a second set of a least two non-parallel axes.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: December 2, 2008
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle, Robert J. Lang
  • Publication number: 20080007526
    Abstract: One embodiment relates to a method of sensing motion of an optical sensor relative to a surface. A first resolution and a second resolution are set. Measurement signals are obtained from a sensor array, and the motion of the optical sensor relative to the surface is tracked using the measurement signals. The tracking of the motion in a first dimension is performed at the first resolution, and the tracking of the motion in a second dimension is performed at the second resolution. Another embodiment relates to an optical sensor apparatus for sensing motion relative to a surface, wherein the tracking of the motion is performed at a variable resolution along each of two axes. Other embodiments and features are also disclosed.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventors: Yansun Xu, Brian Todoroff, Jahja I. Trisnadi, Clinton B. Carlisle
  • Publication number: 20070291001
    Abstract: In one embodiment, an optical navigation sensor for a computer mouse is designed to be operable on an optically transparent material. The optically transparent material may include a contact surface on which the mouse sits during normal operation. An optically rough tracking surface is provided below the contact surface. The mouse includes a light source that illuminates an area on the contact surface and an area on the tracking surface. The mouse may include a tracking sensor onto which the illuminated area on the tracking surface is imaged to detect mouse displacement. The mouse may also include a lift sensor that picks up specular light reflected from the illuminated area on the contact surface to generate lift information indicative of whether the mouse has been lifted off the contact surface. Tracking of the mouse displacement may be qualified with the lift information.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 20, 2007
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle, Yansun Xu
  • Patent number: 7286155
    Abstract: In one embodiment disclosed, an optical engine includes a light modulator coupled to illumination optics and imaging optics. The light modulator may be located at about an object plane. The imaging optics may include a scanner and a spatial filter located at about a transform (or pupil) plane. The scanner coupled with the light modulator may be configured to generate a continuous two-dimensional swath pattern for applications such as wafer processing, printed-circuit board (PCB) patterning/printing, and/or liquid crystal display (LCD) screen printing/patterning systems. Also, a method is disclosed that uses a high-speed one-dimensional light includes controlling a scanner in an optical engine system. The system may be used to provide a two-dimensional swath pattern. The system may use a continuous wave (CW) or other high repetition rate laser source and may provide a printing speed of greater than one Gpixel per second.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 23, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle
  • Patent number: 7286764
    Abstract: An optical add and drop multiplexer system comprising a first module for providing a first signal; a second module for providing a second signal; and a modulator for receiving a channel of the first signal at a first location, the first location configured to actuate between a first configuration and a second configuration, wherein the modulator directs the channel of the first signal as an output signal when the first location is in the first configuration. The modulator may direct the channel of the first signal as a dropped signal when the first location is in the second configuration. The modulator may also receive a channel of the second signal from the second module at a second location configured to independently actuate between the first configuration and the second configuration.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: October 23, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle
  • Patent number: 7285766
    Abstract: One embodiment relates to an optical displacement sensor for sensing relative movement between a data input device and a surface by determining displacement of optical features in a succession of frames. The sensor includes an illuminator and a detector. The illuminator has a light source and illumination optics to illuminate a portion of the surface with a planar phase-front. The detector has a plurality of photosensitive elements and imaging optics. The illuminator and the detector are configured such that the illuminated portion of the surface is less than fifty percent larger than a field of view of the photosensitive elements of the detector. Other embodiments are also described.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 23, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Clinton B. Carlisle, Jahja I. Trisnadi, Charles B. Roxlo, David A. Lehoty
  • Patent number: 7268341
    Abstract: One embodiment described relates to an optical displacement sensor for sensing movement of a data input device across a surface by detecting displacement of optical features in a succession of images of the surface. The sensor includes a detector having an array including a number (N) of sets of photosensitive elements, each set having a number (M) of photosensitive elements, where M is greater than two and not equal to four. Signals from each of the photosensitive elements in a set are electrically coupled or combined with corresponding photosensitive elements in other sets to produce a total of M independent group signals from M interlaced groups of photosensitive elements. Other embodiments are also described.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 11, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: David A. Lehoty, Charles B. Roxlo, Jahja I. Trisnadi, Clinton B. Carlisle
  • Patent number: 7248278
    Abstract: The disclosure relates to a printing system having a linear diffractive spatial light modulator (LDSLM) assembly that diffracts light from a laser source according to or under the influence of an applied electric field applied to the LDSLM assembly. In one embodiment, the LDSLM assembly includes a linear array of diffractive MEMS elements. For example, each of the diffractive MEMS elements can include a number of deformable ribbons having a light reflective planar surface. Preferably, the linear array of diffractive MEMS elements including the ribbons and drive electronics are integrally formed on a single substrate. In other embodiments, the LDSM assembly can include two or more linear arrays of diffractive MEMS elements, and the laser source can include an array of multiple lasers or laser emitters.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: July 24, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Clinton B. Carlisle, Jahja I. Trisnadi, David T. Amm, Anthony A. Abdilla
  • Patent number: 7233443
    Abstract: An arrangement for dispersing light comprises a blazed diffraction grating and a mirror. The blazed diffraction grating comprises a grating plane and a multiplicity of blazed facets. Each blazed facet is oriented at a blaze angle to the grating plane. The mirror couples to the blazed diffraction grating and is oriented parallel to the blazed facets. The arrangement permits a highly dispersive optical function in a very compact structure with low polarization dependent loss.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 19, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Clinton B. Carlisle, Jahja I. Trisnadi
  • Patent number: 7227687
    Abstract: One embodiment relates to a spatial light modulator (SLM) for modulating light incident thereon. The SLM includes a plurality of pixels, each pixel including a plurality of phase shift elements. The SLM also includes a transform filter adapted to control the imaging system to resolve each pixel but not each phase shift element in each pixel. The plurality of pixels are controlled to independently modulate phase and magnitude of light reflected therefrom. Other embodiments are also disclosed.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: June 5, 2007
    Assignee: Silicon Light Machines Corporation
    Inventors: Jahja I. Trisnadi, Alexander P. Payne, Clinton B. Carlisle
  • Patent number: 7177019
    Abstract: This invention is an apparatus for imaging metrology, which in particular embodiments may be integrated with a processor station such that a metrology station is apart from but coupled to a process station. The metrology station is provided with a first imaging camera with a first field of view containing the measurement region. Alternate embodiments include a second imaging camera with a second field of view. Preferred embodiments comprise a broadband ultraviolet light source, although other embodiments may have a visible or near infrared light source of broad or narrow optical bandwidth. Embodiments including a broad bandwidth source typically include a spectrograph, or an imaging spectrograph. Particular embodiments may include curved, reflective optics or a measurement region wetted by a liquid. In a typical embodiment, the metrology station and the measurement region are configured to have 4 degrees of freedom of movement relative to each other.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: February 13, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Fred E. Stanke, Douglas E. Ruth, James M. Cahill, Michael Weber, Clinton B. Carlisle, Hung Pham, Edric Tong, Elliot Burke
  • Patent number: 7138620
    Abstract: An optical sensor and method of using the same is provided for sensing relative movement between the sensor and a surface by detecting changes in optical features of light reflected from the surface. In one embodiment, the sensor includes a two dimensional array of photosensitive elements, the array including at least a first plurality of photosensitive elements arranged and coupled to sense a first combined movement along a first set of at least two non-parallel axes, and a second plurality of photosensitive elements arranged and coupled to sense a second combined movement along a second set of at least two non-parallel axes.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: November 21, 2006
    Assignee: Silicon Light Machines Corporation
    Inventors: Jahja I. Trisnadi, Clinton B. Carlisle, Robert J. Lang
  • Patent number: 7088497
    Abstract: In one embodiment, an optical device includes a polarization diversity module configured to receive an optical input signal and output a first optical output signal and a second optical output signal having the same polarization state. This helps ensure light beams propagating in the optical device have the same polarization state, thereby mitigating the effects of polarization-dependent loss in the optical device. In one embodiment, the optical device comprises an optical dynamic gain equalizer with a light modulator.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: August 8, 2006
    Assignee: Silicon Light Machines Corporation
    Inventors: Clinton B. Carlisle, Jahja I. Trisnadi, Edward D. Huber