Patents by Inventor Clinton C Powell

Clinton C Powell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140341205
    Abstract: In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
    Type: Application
    Filed: May 30, 2014
    Publication date: November 20, 2014
    Inventors: Clinton C. Powell, Kuor-Hsin Chang, Bing Xu
  • Patent number: 8743862
    Abstract: In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 3, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Clinton C Powell, Kuor-Hsin Chang, Bing Xu
  • Patent number: 8483720
    Abstract: A system and method is provided for processing communication signals in a wireless personal area network (WPAN) using a transceiver comprising a first transmitter and a first receiver operable to transmit and receive signals using a first transmission protocol and a second transmitter operable to transmit signals using a second transmission protocol. In various embodiments, the first receiver is used to receive a first signal that was transmitted using the first communication protocol and the second transmitter is used to transmit a second signal using the second transmission protocol in response to receipt of the first signal. The second signal is then processed to determine the location of the object. In some embodiments, the first transmission protocol is compliant with an Institute of Electrical and Electronics Engineers 802.15.4 transmission protocol and the second transmission protocol is compliant with an Ultra-Wide Band (UWB) protocol.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 9, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Shahin Farahani, Kuor-Hsin Chang, Clinton C Powell
  • Patent number: 8085200
    Abstract: A system and method is provided for determining the location of an object. A first transceiver is associated with an object to be located. The first transceiver comprises a first transmitter and a first receiver operable to transmit and receive signals using a first transmission protocol and a second transmitter operable to transmit signals using a second transmission protocol. A first signal is transmitted using the first signal transmission protocol and is received by the first receiver. The second transmitter is then used to transmit a second signal using the second transmission protocol in response to receipt of the first signal and the second signal is then processed to determine the location of the object. In some embodiments, the first transmission protocol is in accordance with the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard and the second transmission protocol is in accordance with a Ultra-Wide Band (UWB) standard.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: December 27, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Clinton C Powell, Kuor-Hsin Chang, Shahin Farahani, Jon T. Adams, Matthew L. Welborn
  • Publication number: 20110261801
    Abstract: In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Clinton C. Powell, Kuor-Hsin Chang, Bing Xu
  • Patent number: 7990937
    Abstract: In a wireless 802.15.4 communication system, a method and system are provided for switching between a predetermined protocol transmission mode and a high-speed transmission mode by including signaling mode information in a data packet (330, 340) to instruct the receiver device (300) to demodulate at least a data payload using the predetermined transmission mode if the signaling mode information comprises a first predetermined value, and to demodulate at least the data payload using the high-speed transmission mode if the signaling mode information comprises a second predetermined value. The signaling mode information may be included in the SFD field of an 802.15.4 SHR structure to instruct the receiver how to demodulate or process the data packet, or may be included as desired anywhere in the data packet to instruct the receiver how to demodulate or process one or more subsequent data packets.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: August 2, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kuor-Hsin Chang, Clinton C Powell, Luis J. Briones
  • Patent number: 7983235
    Abstract: In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: July 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Clinton C Powell, Kuor-Hsin Chang, Bing Xu
  • Publication number: 20090315778
    Abstract: A system and method is provided for determining the location of an object. In embodiments of the disclosure, a first transceiver is associated with an object to be located. The first transceiver comprises a first transmitter and a first receiver operable to transmit and receive signals using a first transmission protocol and a second transmitter operable to transmit signals using a second transmission protocol. A first signal is transmitted using the first signal transmission protocol and is received by the first receiver. The second transmitter is then used to transmit a second signal using the second transmission protocol in response to receipt of said first signal and the second signal is then to determine the location of said object. In some embodiments, the first transmission protocol is in accordance with the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard and the second transmission protocol is in accordance with a Ultra-Wide Band (UWB) standard.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventors: Clinton C Powell, Kuor-Hsin Chang, Shahin Farahani, Jon T. Adams, Mathew L. Welborn
  • Publication number: 20090311960
    Abstract: A system and method is provided for processing communication signals in a wireless personal area network (WPAN) using a transceiver comprising a first transmitter and a first receiver operable to transmit and receive signals using a first transmission protocol and a second transmitter operable to transmit signals using a second transmission protocol. In various embodiments, the first receiver is used to receive a first signal that was transmitted using the first communication protocol and the second transmitter is used to transmit a second signal using the second transmission protocol in response to receipt of the first signal. The second signal is then processed to determine the location of the object. In some embodiments, the first transmission protocol is compliant with an Institute of Electrical and Electronics Engineers 802.15.4 transmission protocol and the second transmission protocol is compliant with an Ultra-Wide Band (UWB) protocol.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 17, 2009
    Inventors: Shahin Farahani, Kuor-Hsin Chang, Clinton C. Powell
  • Publication number: 20090116472
    Abstract: In a wireless 802.15.4 communication system, a method and system are provided for switching between a predetermined protocol transmission mode and a high-speed transmission mode by including signaling mode information in a data packet (330, 340) to instruct the receiver device (300) to demodulate at least a data payload using the predetermined transmission mode if the signaling mode information comprises a first predetermined value, and to demodulate at least the data payload using the high-speed transmission mode if the signaling mode information comprises a second predetermined value. The signaling mode information may be included in the SFD field of an 802.15.4 SHR structure to instruct the receiver how to demodulate or process the data packet, or may be included as desired anywhere in the data packet to instruct the receiver how to demodulate or process one or more subsequent data packets.
    Type: Application
    Filed: November 5, 2007
    Publication date: May 7, 2009
    Inventors: Kuor-Hsin Chang, Clinton C. Powell, Luis J. Briones
  • Publication number: 20090116462
    Abstract: In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
    Type: Application
    Filed: November 5, 2007
    Publication date: May 7, 2009
    Inventors: Clinton C. Powell, Kuor-Hsin Chang, Bing Xu
  • Patent number: 7385913
    Abstract: A generator (304) generates first and second training signals (320, 318) that originate within a wireless communication device (FIG. 3) instead of being received from a source outside the device. A receive portion (212, 214, 216) of the device processes the first training signal to derive a processed training signal. An adaptive equalizer (310) equalizes the processed training signal to derive an equalized training signal. A processor (312) compares the equalized training signal and the second training signal using an adaptive algorithm to derive coefficients for the adaptive equalizer to compensate for variations in the receive portion, and adjusts the adaptive equalizer in accordance with the coefficients to derive a compensated output signal.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: June 10, 2008
    Assignee: Motorola, Inc.
    Inventors: Charles Leroy Sobchak, Mahibur Rahman, Clinton C Powell
  • Patent number: 6996383
    Abstract: An automatic gain control (AGC) system (100) for a controlled gain receiver (1101) includes a magnitude generator (160) and a gain corrector (170). The magnitude generator (160) generates a binary voltage squared signal (165) having a binary value that is directly proportional to a recovered signal power of an intercepted signal (113). The gain corrector (170) determines an adjustment of a gain control value (195) as a multiple of increments that are approximately 3 decibel (dB), by shifting (475, 445) a reference threshold by one or more bits and comparing (485, 455) the shifted reference threshold to the binary voltage squared signal. An initial setting of a state of a step attenuator (114) during a track mode (172) is determined during a warm up mode (171) by comparing the binary voltage squared signal (165) to two different thresholds (245, 255). A filter (162) accommodates a variety of bandwidths and symbol rates by settings of an accumulator (505) and scaler (510) that are included in the filter (162).
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 7, 2006
    Assignee: Motorola, Inc.
    Inventors: James David Hughes, John Richard Oakley, Clinton C Powell, II
  • Patent number: 6967989
    Abstract: A processor (216) time-shares correlators (206) to process (402) pilot channels for a plurality of branches to derive pilot symbols for each of the plurality of branches before processing control and data channels. The processor and the correlators cooperate to determine (404) from the pilot symbols a timing estimate for each of the plurality of branches. A signal quality estimator (210) determines (406) from the pilot symbols a signal quality for each of the plurality of branches. Subsequently, the processor cooperates with the correlators to process (408) the control and data channels of the plurality of branches, in an order determined by a plurality of branch attributes including at least one of the signal quality and the timing estimate determined for each of the plurality of branches.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: November 22, 2005
    Assignee: Motorola, Inc.
    Inventors: Robert Gorday, Clinton C Powell, David Taubenheim
  • Patent number: 6853693
    Abstract: A correlation demodulator unit (20) having gain normalization includes a correlation demodulator (12) for receiving a signal from a receiver (8). The correlation demodulator has a plurality of correlators (C1-CN) corresponding to a plurality of N correlator outputs. A gain normalizer (15) is coupled to the correlation demodulator for accumulating symbol energy on a symbol by symbol basis for each of the plurality of correlator outputs based upon a current symbol decision providing at least an accumulated value within an accumulator (43) for the plurality of correlators and for normalizing the plurality of N correlator outputs using the accumulated value(s).
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 8, 2005
    Assignee: Motorola, Inc.
    Inventors: Christopher T. Thomas, Chun-Ye Susan Chang, Clinton C Powell, II
  • Publication number: 20040013083
    Abstract: A generator (304) generates first and second training signals (320, 318) that originate within a wireless communication device (FIG. 3) instead of being received from a source outside the device. A receive portion (212, 214, 216) of the device processes the first training signal to derive a processed training signal. An adaptive equalizer (310) equalizes the processed training signal to derive an equalized training signal. A processor (312) compares the equalized training signal and the second training signal using an adaptive algorithm to derive coefficients for the adaptive equalizer to compensate for variations in the receive portion, and adjusts the adaptive equalizer in accordance with the coefficients to derive a compensated output signal.
    Type: Application
    Filed: April 24, 2002
    Publication date: January 22, 2004
    Applicant: MOTOROLA, INC.
    Inventors: Charles Leroy Sobchak, Mahibur Rahman, Clinton C. Powell
  • Patent number: 6654594
    Abstract: An automatic gain control (AGC) system (100) for a controlled gain receiver (1101) includes a magnitude generator (160) and a gain corrector (170). The magnitude generator (160) generates a binary voltage squared signal (165) having a binary value that is directly proportional to a recovered signal power of an intercepted signal (113). The gain corrector (170) determines an adjustment of a gain control value (195) as a multiple of increments that are approximately 3 decibel (dB), by shifting (475, 445) a reference threshold by one or more bits and comparing (485, 455) the shifted reference threshold to the binary voltage squared signal. An initial setting of a state of a step attenuator (114) during a track mode (172) is determined during a warm up mode (171) by comparing the binary voltage squared signal (165) to two different thresholds (245, 255).
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: November 25, 2003
    Assignee: Motorola, Inc.
    Inventors: James David Hughes, John Richard Oakley, Clinton C Powell, II
  • Publication number: 20030215002
    Abstract: A processor (216) time-shares correlators (206) to process (402) pilot channels for a plurality of branches to derive pilot symbols for each of the plurality of branches before processing control and data channels. The processor and the correlators cooperate to determine (404) from the pilot symbols a timing estimate for each of the plurality of branches. A signal quality estimator (210) determines (406) from the pilot symbols a signal quality for each of the plurality of branches. Subsequently, the processor cooperates with the correlators to process (408) the control and data channels of the plurality of branches, in an order determined by a plurality of branch attributes including at least one of the signal quality and the timing estimate determined for each of the plurality of branches.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Robert Gorday, Clinton C. Powell, David Taubenheim
  • Publication number: 20030153289
    Abstract: An automatic gain control (AGC) system (100) for a controlled gain receiver (1101) includes a magnitude generator (160) and a gain corrector (170). The magnitude generator (160) generates a binary voltage squared signal (165) having a binary value that is directly proportional to a recovered signal power of an intercepted signal (113). The gain corrector (170) determines an adjustment of a gain control value (195) as a multiple of increments that are approximately 3 decibel (dB), by shifting (475, 445) a reference threshold by one or more bits and comparing (485, 455) the shifted reference threshold to the binary voltage squared signal. An initial setting of a state of a step attenuator (114) during a track mode (172) is determined during a warm up mode (171) by comparing the binary voltage squared signal (165) to two different thresholds (245, 255). A filter (162) accommodates a variety of bandwidths and symbol rates by settings of an accumulator (505) and scaler (510) that are included in the filter (162).
    Type: Application
    Filed: January 17, 2003
    Publication date: August 14, 2003
    Inventors: James David Hughes, John Richard Oakley, Clinton C. Powell
  • Patent number: 6571083
    Abstract: An automatic simulcast correction method (300) for a selective call receiver (100) includes the steps of measuring a received signal (304) for a received signal strength indication measurement and then determining if a protocol indicates a simulcast signal (310). If the received signal strength indication measurement is above a predefined threshold and the protocol indicates the simulcast signal, then the selective call receiver is optimized for simulcast delay spread distortion (312). If the received signal strength indication measurement is below a predefined threshold or the protocol does not indicate the simulcast signal, then the selective call receiver is optimized for static sensitivity (314).
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: May 27, 2003
    Assignee: Motorola, Inc.
    Inventors: Clinton C Powell, II, James David Hughes, Chun-Ye Susan Chang, Christopher T. Thomas, Mahibur Rahman, Edgar Herbert Callaway, Jr., James A. Kimball