Patents by Inventor Clinton W. Schneider

Clinton W. Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9320565
    Abstract: Disclosed herein are various catheter and catheter systems that are useful in ablating tissue that is also subject to surface perfusion, for example blood flow across and/or through tissue. A representative embodiment of a catheter useful with the present invention includes an anemometer located on an exterior surface of the distal portion of the catheter. The anemometer is thermally isolated from the distal tip to permit the anemometer to measure the cooling effect of surface perfusion. The ablation catheter may include thermal insulation to insulate the anemometer from the distal tip. Alternatively, and/or in addition, the anemometer may be positioned proximally of the distal tip. The catheter may include one or more temperature sensors thermally coupled to the distal tip to measure the temperature of the distal tip. The distal tip may include one or more spiral grooves, or one or more holes.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: April 26, 2016
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Clinton W. Schneider, John P. Gerhart
  • Patent number: 8290578
    Abstract: A compensation circuit has a predetermined, known complex impedance and is located in a handle of a catheter or in a distal end of a cable that connects to the catheter. The compensation circuit is probed with a pilot signal produced by a compensation control that is external to the catheter, by way of an electrical connection through the connecting cable. The compensation control measures the complex impedance, which is the combination of the circuit's known impedance as well as that of the cable. The compensation control then determines the difference between the measured and the known complex impedances. The difference represents that which is attributable to the cable, and is used to compensate or cancel out such cable-related contributions to complex impedance in measurements made over other electrical connections in the same cable.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 16, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: Clinton W. Schneider
  • Publication number: 20100168738
    Abstract: Disclosed herein are various catheter and catheter systems that are useful in ablating tissue that is also subject to surface perfusion, for example blood flow across and/or through tissue. A representative embodiment of a catheter useful with the present invention includes an anemometer located on an exterior surface of the distal portion of the catheter. The anemometer is thermally isolated from the distal tip to permit the anemometer to measure the cooling effect of surface perfusion. The ablation catheter may include thermal insulation to insulate the anemometer from the distal tip. Alternatively, and/or in addition, the anemometer may be positioned proximally of the distal tip. The catheter may include one or more temperature sensors thermally coupled to the distal tip to measure the temperature of the distal tip. The distal tip may include one or more spiral grooves, or one or more holes.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Clinton W. Schneider, John P. Gerhart
  • Patent number: 7150767
    Abstract: A method of producing an electrode for use in the manufacture of electrolytic capacitors for implantable cardioverter defibrillators comprises first coating the foil with a photoresist, second, applying a holographic image to the photoresist, third, removing a portion of the photoresist to expose a portion of the foil and create a pattern of photoresist on the foil and etching the foil. Alternatively, the method comprises applying an oxide or metal layer to the exposed foil surface, removing the pattern of photoresist to create a pattern of oxide or metal and etching the foil. The patterns of photoresist, oxide or metal all retard or prevent etching of the foil where the foil surface is covered. This results in a pattern of unetched foil with the remaining area being heavily etched. The resulting patterns stop crack propagation through the etched portions to yield foils with high gain and improved strength.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: December 19, 2006
    Assignee: Pacesetter, Inc.
    Inventors: Clinton W. Schneider, R. Jason Hemphill, Katherine E. Sudduth, Thomas V. Graham, Thomas F. Strange