Patents by Inventor Clive Butler

Clive Butler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160166988
    Abstract: Compositions useful for treating the exhaust gases of diesel engines contain zirconium oxide, silicon oxide and at least one oxide of at least one element M selected from among titanium, aluminum, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese, in the following mass proportions of these different elements: silicon oxide: 5%-30%; M-element oxide: 1%-20%; the balance being zirconium oxide; such compositions also have an acidity, as measured by the methylbutynol test, of at least 90% and are prepared by placing a zirconium compound, a silicon compound, at least one M-element compound and a basic compound in a liquid medium, thereby generating a precipitate, maturing the precipitate in a liquid medium and separating and calcining the precipitate.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 16, 2016
    Inventors: Olivier LARCHER, Emmanuel ROHART, Stephan VERDIER, Heather BRADSHAW, Clive BUTLER, Deborah HARRIS, Mairead FEELEY, Guillaume CRINIERE
  • Publication number: 20120328500
    Abstract: Compositions useful for treating the exhaust gases of diesel engines contain zirconium oxide, silicon oxide and at least one oxide of at least one element M selected from among titanium, aluminum, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese, in the following mass proportions of these different elements: silicon oxide: 5%-30%; M-element oxide: 1%-20%; the balance being zirconium oxide; such compositions also have an acidity, as measured by the methylbutynol test, of at least 90% and are prepared by placing a zirconium compound, a silicon compound, at least one M-element compound and a basic compound in a liquid medium, thereby generating a precipitate, maturing the precipitate in a liquid medium and separating and calcining the precipitate.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Olivier LARCHER, Emmanuel ROHART, Stephan VERDIER, Heather BRADSHAW, Clive BUTLER, Deborah HARRIS, Mairead FEELEY, Guillaume CRINIERE
  • Publication number: 20100247411
    Abstract: Compositions useful for treating exhaust gases contain zirconium, titanium and tungsten oxides, and optionally the oxide of an element M selected from among silicon, aluminum, iron, molybdenum, manganese, zinc, tin, and rare earths in the following mass proportions of these different elements: titanium oxide: 20%-50%; tungsten oxide: 1%-20%, M-element oxide: 1%-20%; the balance being zirconium oxide; such compositions are prepared by placing in a liquid medium a zirconium compound, a titanium compound, optionally an M-element compound and a basic compound, adding a tungsten compound to the precipitate suspension thus obtained and having a pH value ranging from 1 to 7, maturing the suspension resulting from the preceding step, and optionally separating the precipitate and calcining same.
    Type: Application
    Filed: October 19, 2007
    Publication date: September 30, 2010
    Applicants: RHODIA OPERATIONS, MAGNESIUM ELEKTRON LIMITED
    Inventors: Olivier Larcher, Emmanuel Rohart, Stephan Verdier, Heather Bradshaw, Clive Butler, Deborah Harris, Mairead Feeley, Hazel Stephenson
  • Publication number: 20100247407
    Abstract: Compositions useful for treating the exhaust gases of diesel engines contain zirconium oxide, silicon oxide and at least one oxide of at least one element M selected from among titanium, aluminum, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese, in the following mass proportions of these different elements: silicon oxide: 5%-30%; M-element oxide: 1%-20%; the balance being zirconium oxide; such compositions also have an acidity, as measured by the methylbutynol test, of at least 90% and are prepared by placing a zirconium compound, a silicon compound, at least one M-element compound and a basic compound in a liquid medium, thereby generating a precipitate, maturing the precipitate in a liquid medium and separating and calcining the precipitate.
    Type: Application
    Filed: October 19, 2007
    Publication date: September 30, 2010
    Applicants: RHODIA OPERATIONS, MAGNESIUM ELEKTRON LIMITED
    Inventors: Olivier Larcher, Emmanuel Rohart, Stephan Verdier, Heather Bradshaw, Clive Butler, Deborah Harris, Mairead Feeley, Guillaume Criniere
  • Patent number: 7794687
    Abstract: This invention relates to an improved amorphous zirconium hydroxide and a method for its production. The hydroxide has a surface area of at least 300 m2/g, a total pore volume of at least 0.70 cm3/g and an average pore size of between 5 nm and 15 nm, and is prepared by a process which comprises the steps of: a) preparing an aqueous solution comprising sulphate anions and a zirconium salt such that the ZrO2:SO3 ratio is 1:0.40 to 1:0.52, (b) chilling the solution to below 25° C., (c) adding an alkali in order to precipitate the amorphous zirconium hydroxide, (d) filtering and washing the precipitated zirconium hydroxide with water or an alkali to remove residual sulphate and chloride, (e) hydrothermally treating the zirconium hydroxide at a pressure of less than 3 barg, and (f) drying the zirconium hydroxide. The zirconium hydroxide of the present invention, which can be doped, is particularly useful in catalytic applications.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 14, 2010
    Assignee: Magnesium Elektron Limited
    Inventors: Heather Bradshaw, Clive Butler, Hazel Stephenson
  • Publication number: 20090005239
    Abstract: This invention relates to an improved amorphous zirconium hydroxide and a method for its production. The hydroxide has a surface area of at least 300 m2/g, a total pore volume of at least 0.70 cm3/g and an average pore size of between 5 nm and 15 nm, and is prepared by a process which comprises the steps of: a) preparing an aqueous solution comprising sulphate anions and a zirconium salt such that the ZrO2:SO3 ratio is 1:0.40 to 1:0.52, (b) chilling the solution to below 25° C., (c) adding an alkali in order to precipitate the amorphous zirconium hydroxide, (d) filtering and washing the precipitated zirconium hydroxide with water or an alkali to remove residual sulphate and chloride, (e) hydrothermally treating the zirconium hydroxide at a pressure of less than 3 barg, and (f) drying the zirconium hydroxide. The zirconium hydroxide of the present invention, which can be doped, is particularly useful in catalytic applications.
    Type: Application
    Filed: January 24, 2007
    Publication date: January 1, 2009
    Applicant: MAGNESIUM ELEKTRON LIMITED
    Inventors: Heather Bradshaw, Clive Butler, Hazel Stephenson
  • Publication number: 20030195922
    Abstract: At system initialization, the core routers and the edge routers will begin to exchange routing information that is required for the network to become operational. The notification shaping method of the present invention can be used to prevent the core router from flooding the edge routers with notifications while the edge routers are trying to process routing updates. In the present invention, notifications are sent in a steady flow, and not in bursts. The notification shaping method uses a timer to process the notifications stored in the notification queue. In addition, the notification shaping method comprises three basic steps. Step 1 comprises putting an entry on the notification queue. Step 2 comprises timer expiration. Step 3 comprises responding to an inform.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 16, 2003
    Applicant: ALCATEL
    Inventors: Ken Andrews, Clive Butler
  • Patent number: 5659969
    Abstract: A probe for a position determining apparatus includes a sensing space and a movable stylus supported for three-dimensional position determining movement which extends into the space. A device emits sensing radiation into the space and a collector collects the sensing radiation from the space. A deflector is supported on the stylus within the space to deflect emitted sensing radiation and is movable with position determining movement of the stylus. The deflector concentrates the sensing radiation and the collector is sensitive to variations in the intensity distribution of collected deflected radiation which occur due to the three-dimensional movement of the stylus.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: August 26, 1997
    Assignee: British Technology Group Limited
    Inventors: Clive Butler, Qingping Yang
  • Patent number: 5640240
    Abstract: A surface-measuring apparatus comprising a probe and means for moving the probe towards and away from a surface under examination and for monitoring such movement, the probe comprising a plurality of closely spaced light-collecting elements arranged in a light-collecting plane, lens means positioned to produce a sharply focussed image of said light collecting elements at an image plane movable relative to said surface by movement of the probe, illuminating means so arranged that the lens unit forms an illuminated spot image of it in the image plane in co-incidence with the image In the image plane of one of the light-collecting elements, and means for measuring the incidence of light on the said one of the light-collecting elements and on surrounding ones of those elements. In one embodiment (FIG.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: June 17, 1997
    Assignee: British Technology Group Ltd.
    Inventors: Clive Butler, Gregorios Gregoriou
  • Patent number: 5333388
    Abstract: A probe for position-determining apparatus and the like having a housing and in the housing a sensing space and an aperture to the sensing space, a stylus extending out of the sensing space through the aperture, and a stylus-support at the aperture. The stylus is constrained in low-friction engagement with the stylus support towards a generally neutral axis while permitting position-determining displacement on the stylus support. The stylus is linked to the constraining low friction engagement through a lever arrangement including a first lever element extending sideways from and around the stylus and a second lever from the first lever to transfer stylus displacement to the constraining low friction engagement. The lever arrangement includes an abutment engageable by the second lever.
    Type: Grant
    Filed: September 13, 1993
    Date of Patent: August 2, 1994
    Assignee: British Technology Group Limited
    Inventors: Clive Butler, Iden Shams
  • Patent number: 5222304
    Abstract: A probe for position-determining apparatus and the like has a housing (10) and in the housing a sensing space (60) and an aperture (915) to the sensing space, a stylus (40) extending out of the sensing space through the aperture, a low-friction stylus support (50;17) around the aperture, a resilient element (20;120) for constraining the stylus on to the support and generally towards a neutral axis while permitting position-determining displacement on the support against the constraining element, which is outside the sensing space, while in the sensing space is a sensing arrangement (30, 42; 30, 42, 35, 37) separate from the constraining element to sense directly significant movement of the stylus from the neutral axis without contact with the stylus and to indicate such significant movement of the stylus as a position-determining displacement.
    Type: Grant
    Filed: February 6, 1991
    Date of Patent: June 29, 1993
    Assignee: British Technology Group Limited
    Inventor: Clive Butler