Patents by Inventor Clive M. Philbrick

Clive M. Philbrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020091844
    Abstract: A network interface device connected to a host provides hardware and processing mechanisms for accelerating data transfers between the host and a network. Some data transfers are processed using a dedicated fast-path whereby the protocol stack of the host performs no network layer or transport layer processing. Other data transfers are, however, handled in a slow-path by the host protocol stack. In one embodiment, the host protocol stack has an ISCSI layer, but a response to a solicited ISCSI read request command is nevertheless processed by the network interface device in fast-path. In another embodiment, an initial portion of a response to a solicited command is handled using the dedicated fast-path and then after an error condidtion occurs a subsequent portion of the response is handled using the the slow-path. The interface device uses a command status message to communicate status to the host.
    Type: Application
    Filed: October 2, 2001
    Publication date: July 11, 2002
    Applicant: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher
  • Publication number: 20020087732
    Abstract: A network interface device provides a fast-path that avoids most host TCP and IP protocol processing for most messages. The host retains a fallback slow-path processing capability. In one embodiment, generation of a response to a TCP/IP packet received onto the network interface device is accelerated by determining the TCP and IP source and destination information from the incoming packet, retrieving an appropriate template header, using a finite state machine to fill in the TCP and IP fields in the template header without sequential TCP and IP protocol processing, combining the filled-in template header with a data payload to form a packet, and then outputting the packet from the network interface device by pushing a pointer to the packet onto a transmit queue. A transmit sequencer retrieves the pointer from the transmit queue and causes the corresponding packet to be output from the network interface device.
    Type: Application
    Filed: December 17, 2001
    Publication date: July 4, 2002
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E.J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6393487
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: May 21, 2002
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6389479
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: May 14, 2002
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6334153
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: December 25, 2001
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20010047433
    Abstract: A Network Interface device (NI device) coupled to a host computer receives a multi-packet message from a network (for example, the Internet) and DMAs the data portions of the various packets directly into a destination in application memory on the host computer. The address of the destination is determined by supplying a first part of the first packet to an application program such that the application program returns the address of the destination. The address is supplied by the host computer to the NI device so that the NI device can DMA the data portions of the various packets directly into the destination. In some embodiments the NI device is an expansion card added to the host computer, whereas in other embodiments the NI device is a part of the host computer.
    Type: Application
    Filed: February 20, 2001
    Publication date: November 29, 2001
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E.J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20010037406
    Abstract: An interface device is connected to a host by an I/O bus and provides hardware and processing mechanisms for accelerating data transfers between a network and a storage unit, while controlling the data transfers by the host. The interface device includes hardware circuitry for processing network packet headers, and can use a dedicated fast-path for data transfer between the network and the storage unit, the fast-path set up by the host. The host CPU and protocol stack avoids protocol processing for data transfer over the fast-path, freeing host bus bandwidth, and the data need not cross the I/O bus, freeing I/O bus bandwidth. Realtime audio and video communication can also be provided when the interface device is coupled by an audio/video interface to appropriate communication devices, such as microphone, a speaker, a camera and/or a display.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 1, 2001
    Inventors: Clive M. Philbrick, Laurence B. Boucher, Daryl D. Starr
  • Publication number: 20010036196
    Abstract: A first partial checksum for the header portion of a TCP header is generated on an intelligent network interface card (INIC) before all the data of the data payload of the TCP message has been transferred to the INIC. A pseudopacket with the first partial checksum and the data is assembled in DRAM on the INIC as the data arrives onto the INIC. When the last portion of the data of the data payload is received onto the INIC, a second partial checksum for the data payload is generated. The pseudopacket is read out of DRAM for transfer to a network. While the pseudopacket is being transferred, the second partial header is combined with the first partial header and the resulting final checksum is inserted into the pseudopacket so that a complete TCP packet with a correct checksum is output from the INIC to the network.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 1, 2001
    Inventors: Stephen E. J. Blightman, Laurence B. Boucher, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20010037397
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The CPD provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The CPD also assists the host CPU for those message packets that are chosen for processing by host software layers. A context for a message is defined that allows DMA controllers of the CPD to move data, free of headers, directly to or from a destination or source in the host. The context can be stored as a communication control block (CCB) that is controlled by either the CPD or by the host CPU. The CPD contains specialized hardware circuits that process media access control, network and transport layer headers of a packet received from the network, saving the host CPU from that processing for fast-path messages.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 1, 2001
    Inventors: Laurence B. Boucher, Clive M. Philbrick, Daryl D. Starr, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen
  • Publication number: 20010027496
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: March 12, 2001
    Publication date: October 4, 2001
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20010023460
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: December 26, 2000
    Publication date: September 20, 2001
    Applicant: Alacritech Inc.
    Inventors: Laurence B. Boucher, Stephen E.J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20010021949
    Abstract: A network interface device couples a host computer to a network. The network interface device includes a processor and a DMA controller. The processor causes the DMA controller to perform multiple DMA commands before the processor takes a particular software branch. The processor issues the DMA commands by placing the DMA commands in a memory and then pushing values indicative of the DMA commands onto a DMA command queue. The values are popped off the DMA command queue and are executed by the DMA controller one at a time. The DMA commands are executed in the same order that they were issued by the processor. The processor need not monitor multiple DMA commands to make sure they have all been completed before the software branch is taken, but rather the processor pops a DMA command complete queue to make sure that the last of the DMA commands has been completed.
    Type: Application
    Filed: May 14, 2001
    Publication date: September 13, 2001
    Applicant: Alacritech, Inc.
    Inventors: Stephen E.J. Blightman, Daryl D. Starr, Clive M. Philbrick
  • Patent number: 6247060
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: June 12, 2001
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6226680
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the IMC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: May 1, 2001
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr