Patents by Inventor Clotilde Carlow

Clotilde Carlow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230407419
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 21, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Patent number: 11732315
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: August 22, 2023
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Publication number: 20230048863
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: September 28, 2022
    Publication date: February 16, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, JR., Clotilde Carlow, Esta Slayton, Thomas C. Evans, JR.
  • Patent number: 11525166
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: December 13, 2022
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Publication number: 20220213564
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, JR., Clotilde Carlow, Esta Slayton
  • Patent number: 11345970
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 31, 2022
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Publication number: 20210404024
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 30, 2021
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, D.Phil., Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Publication number: 20200399318
    Abstract: Disclosed herein are isolated peptides inhibit activity of a cofactor-independent phosphoglycerate mutase. In some examples, the isolated peptide is 6-20 amino acids long and includes the amino acid sequence of any one of SEQ ID NOs: 1-22 or 54, an analog or derivative thereof, or a pharmaceutically acceptable salt or ester thereof. In some examples, the peptide is a cyclic peptide with an N-terminal ring of 6-15 amino acids (for example, 6-10 amino acids) and a C-terminal linear portion of 1-9 amino acids (for example, 3-8 amino acids. Also disclosed h are methods of treating or inhibiting an infection in a subject, including administering to the subject an effective amount of a composition including one of more of the disclosed peptides, or analogs or derivative thereof, or pharmaceutically acceptable salts or esters thereof.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 24, 2020
    Applicants: The United States of America, as represented by the Secretary, Dept. of Health and Human Services, The University of Tokyo, New England Biolabs, Inc.
    Inventors: James Inglese, Patricia Dranchak, Ryan MacArthur, Hiroaki Suga, Hao Yu, Clotilde Carlow, Zhiru Li
  • Patent number: 10808010
    Abstract: Disclosed herein are isolated peptides inhibit activity of a cofactor-independent phosphoglycerate mutase. In some examples, the isolated peptide is 6-20 amino acids long and includes the amino acid sequence of any one of SEQ ID NOs: 1-22 or 54, an analog or derivative thereof, or a pharmaceutically acceptable salt or ester thereof. In some examples, the peptide is a cyclic peptide with an N-terminal ring of 6-15 amino acids (for example, 6-10 amino acids) and a C-terminal linear portion of 1-9 amino acids (for example, 3-8 amino acids. Also disclosed h are methods of treating or inhibiting an infection in a subject, including administering to the subject an effective amount of a composition including one of more of the disclosed peptides, or analogs or derivative thereof, or pharmaceutically acceptable salts or esters thereof.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 20, 2020
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, The University of Tokyo, New England Biolabs, Inc.
    Inventors: James Inglese, Patricia Dranchak, Ryan MacArthur, Hiroaki Suga, Hao Yu, Clotilde Carlow, Zhiru Li
  • Publication number: 20190169234
    Abstract: Disclosed herein are isolated peptides inhibit activity of a cofactor-independent phosphoglycerate mutase. In some examples, the isolated peptide is 6-20 amino acids long and includes the amino acid sequence of any one of SEQ ID NOs: 1-22 or 54, an analog or derivative thereof, or a pharmaceutically acceptable salt or ester thereof. In some examples, the peptide is a cyclic peptide with an N-terminal ring of 6-15 amino acids (for example, 6-10 amino acids) and a C-terminal linear portion of 1-9 amino acids (for example, 3-8 amino acids. Also disclosed h are methods of treating or inhibiting an infection in a subject, including administering to the subject an effective amount of a composition including one of more of the disclosed peptides, or analogs or derivative thereof, or pharmaceutically acceptable salts or esters thereof.
    Type: Application
    Filed: August 10, 2017
    Publication date: June 6, 2019
    Applicants: The United States of America, as represented by the Secretary, Dept, of Health and Human Services, The University of Tokyo, New England Biolabs, Inc.
    Inventors: James Inglese, Patricia Dranchak, Ryan MacArthur, Hiroaki Suga, Hao Yu, Clotilde Carlow, Zhiru Li
  • Publication number: 20060111848
    Abstract: Present embodiments of the invention describe computational methods for performing a systematic, genome-wide search for novel drug targets in pathogenic organisms for example, the human filarial parasites. Cofactor independent phosphoglycerate mutase (iPGM) was identified by this search as a candidate target for identifying therapeutic agents for use in treating animal or plant subjects infected with parasitic nematodes, microbial pathogens including microsporidia, fungi etc. A consensus amino acid or nucleotide sequence that characterizes iPGM is further provided.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 25, 2006
    Applicant: New England Biolabs, Inc.
    Inventors: Clotilde Carlow, Yinhua Zhang, Jeremy Foster, Sanjay Kumar