Patents by Inventor Clyde Parrish

Clyde Parrish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110233067
    Abstract: An electrochemical process and device for the controlled and uniform heating of electrically-conductive fluids, the process or device having at least one reactor and at least one power source with at least one electrode and at least one additional conductive material for direct heating of the fluid and for producing electrochemical changes of the fluid to result in at least one property change of the fluid and at least one product.
    Type: Application
    Filed: September 25, 2010
    Publication date: September 29, 2011
    Applicant: CONYERS TECHNOLOGY GROUP, LLC
    Inventors: Arthur C. Lind, Ru T. Wang, Clyde Parrish, Neil Ginther, Jed Aten, Jan Surma, Jerry Weinberg, William R. Aten
  • Publication number: 20050255019
    Abstract: Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.
    Type: Application
    Filed: May 11, 2004
    Publication date: November 17, 2005
    Inventor: Clyde Parrish
  • Publication number: 20050255022
    Abstract: Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.
    Type: Application
    Filed: January 14, 2005
    Publication date: November 17, 2005
    Inventors: Clyde Parrish, Landy Chung
  • Publication number: 20050252856
    Abstract: Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly-concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.
    Type: Application
    Filed: May 11, 2004
    Publication date: November 17, 2005
    Inventor: Clyde Parrish
  • Publication number: 20050019229
    Abstract: Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
    Type: Application
    Filed: August 12, 2004
    Publication date: January 27, 2005
    Inventor: Clyde Parrish