Patents by Inventor Cody A. Desjardins

Cody A. Desjardins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240408227
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: August 15, 2024
    Publication date: December 12, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20240398968
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: August 15, 2024
    Publication date: December 5, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20240398967
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: August 9, 2024
    Publication date: December 5, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Publication number: 20240382609
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: July 8, 2022
    Publication date: November 21, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Cody A. Desjardins, Kim Tang, James McSwiggen, Romesh R. Subramanian, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Publication number: 20240382513
    Abstract: Aspects of the disclosure relate to molecular payloads that modulate the expression or activity of genes involved in muscle growth and maintenance (e.g., MSTN, INHBA, ACVR1B, MLCK1, ACVR1, FBXO32, TRIM63, MEF2D, KLF15, MED1, MED13, and/or PPP1R3A), and complexes comprising a muscle-targeting agent covalently linked to such molecular payloads. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on a muscle cell (e.g., a cardiac muscle cell, a smooth muscle cell, a skeletal muscle cell). In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: July 1, 2022
    Publication date: November 21, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Cody A. Desjardins, Duncan Brown, Victor Kotelianski, Timothy Weeden, Brendan Quinn, John Najim
  • Patent number: 12144868
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: March 1, 2024
    Date of Patent: November 19, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 12144867
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: March 1, 2024
    Date of Patent: November 19, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20240368296
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: July 8, 2022
    Publication date: November 7, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Cody A. Desjardins, Kim Tang, James McSwiggen, Romesh R. Subramanian, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Patent number: 12128109
    Abstract: Aspects of the disclosure relate to complexes and other aspects relate to formulations (e.g., aqueous, lyophilized forms) comprising such complexes (e.g., wherein each complex is of the exemplary formula shown below) comprising a phosphorodiamidate morpholino oligomer (e.g., useful for targeting DMD) covalently linked to an antibody (e.g., anti-TfR1 antibody). In some embodiments, the complexes are formulated with histidine (e.g., L-histidine) and sucrose at a specified pH (e.g., about 5.0 to 7.0). Also provided are uses of these formulations for treating a subject having a mutated DMD allele associated with Duchenne Muscular Dystrophy.
    Type: Grant
    Filed: August 24, 2023
    Date of Patent: October 29, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Timothy Weeden, Scott Hilderbrand, Sean Spring, Peiyi Shen, Cody A. Desjardins, Romesh R. Subramanian, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Publication number: 20240325558
    Abstract: The present application relates to oligonucleotides (e.g., antisense oligonucleotides such as gapmers) designed to target DMPK RNAs and targeting complexes for delivering the oligonucleotides to cells (e.g., muscle cells) and uses thereof, particularly uses relating to treatment of disease. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DMPK.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 3, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Stefano Zanotti, Tyler Picariello, Timothy Weeden, Cody A. Desjardins, Romesh R. Subramanian, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Patent number: 12102687
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: March 19, 2024
    Date of Patent: October 1, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20240318176
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: July 8, 2022
    Publication date: September 26, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Cody A. Desjardins, Kim Tang, James McSwiggen, Romesh R. Subramanian, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Publication number: 20240318177
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: July 8, 2022
    Publication date: September 26, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Cody A. Desjardins, Kim Tang, James McSwiggen, Romesh R. Subramanian, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Patent number: 12097263
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: January 19, 2024
    Date of Patent: September 24, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Publication number: 20240309107
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: May 7, 2024
    Publication date: September 19, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Publication number: 20240294921
    Abstract: Aspects of the disclosure relate to oligonucleotides (e.g., RNAi oligonucleotides such as siRNAs) designed to target GYSI RNAs and targeting complexes for delivering the oligonucleotides to cells (e.g., muscle cells) and uses thereof, particularly uses relating to treatment of disease (e.g., Pompe Disease).
    Type: Application
    Filed: June 17, 2022
    Publication date: September 5, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Cody A. Desjardins, Oxana Beskrovnaya, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim, Victor Kotelianski, Duncan Brown
  • Publication number: 20240252666
    Abstract: Aspects of the disclosure relate to complexes and other aspects relate to formulations (e.g., aqueous, lyophilized forms) comprising such complexes comprising an oligonucleotide (e.g., useful for targeting DMPK) covalently linked to an antibody (e.g., anti-TfR1 antibody).
    Type: Application
    Filed: February 8, 2024
    Publication date: August 1, 2024
    Applicant: Dyne Therapeutics, Inc,
    Inventors: Scott Hilderbrand, Timothy Weeden, John Najim, Stefano Zanotti, Romesh R. Subramanian, Mohammed T. Qatanani, Cody A, Desjardins, Kim Tang, Brendan Quinn
  • Publication number: 20240238435
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: March 19, 2024
    Publication date: July 18, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20240216522
    Abstract: The present application relates to oligonucleotides (e.g., antisense oligonucleotides such as gapmers) designed to target FXN RNAs and targeting complexes for delivering the oligonucleotides to cells (e.g., muscle cells) and uses thereof, particularly uses relating to treatment of disease. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload increases expression or activity of a FXN allele comprising a disease-associated-repeat.
    Type: Application
    Filed: June 17, 2022
    Publication date: July 4, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Cody A. Desjardins, Oxana Beskrovnaya, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim, Victor Kotelianski, Duncan Brown
  • Publication number: 20240207430
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: March 1, 2024
    Publication date: June 27, 2024
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim