Patents by Inventor Cole URNES

Cole URNES has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101984
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: February 13, 2023
    Publication date: March 28, 2024
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20240026386
    Abstract: Provided herein are systems comprising Class 2, Type V CRISPR polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a BCL11A gene. The systems are also useful for the modification of cells in subjects with a hemoglobinopathy-related disease. Also provided are methods of treatment of subjects having a hemoglobinopathy-related disease by administration of the systems or nucleic acids encoding such systems that target the BCL11A gene in such subjects.
    Type: Application
    Filed: December 2, 2021
    Publication date: January 25, 2024
    Inventors: Benjamin OAKES, Sean HIGGINS, Sarah DENNY, Brett T. STAAHL, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230167424
    Abstract: Provided herein are systems comprising Class2, Type V CRISPR polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a PCSK9 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the PCSK9 gene. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations.
    Type: Application
    Filed: January 8, 2021
    Publication date: June 1, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Patent number: 11613742
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 28, 2023
    Assignee: SCRIBE THERAPEUTICS INC.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes
  • Publication number: 20230081117
    Abstract: Provided herein are CasX:gNA systems, and compositions and methods relating thereto, the systems comprising CasX proteins, guide nucleic acids (gNAs), and optionally donor template nucleic acids useful for the modification cell genes encoding proteins involved in antigen processing, antigen presentation, antigen recognition, and/or antigen response, as well as methods of producing and using populations of cells comprising these modified genes. In some embodiments, the modified cells further express chimeric antigen receptors (CAR) or engineered T cell receptors (TCR). Such systems are useful for preparing cells for immunotherapy.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 16, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230032369
    Abstract: Provided herein are CRISPR:guide systems comprising Class 2 Type V polypeptides (e.g. CasX:gNA systems comprising CasX polypeptides), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a HTT gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the huntingtin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a HTT-related disease, such as Huntington's disease.
    Type: Application
    Filed: May 31, 2022
    Publication date: February 2, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230033866
    Abstract: Provided herein are Class 2 Type V CRISPR:gNA systems comprising Class 2 Type V CRISPR polypeptides (e.g. CasX), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a RHO gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the rhodopsin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a RHO-related disease, such as retinitis pigmentosa.
    Type: Application
    Filed: December 4, 2020
    Publication date: February 2, 2023
    Inventors: Benjamin OAKES, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES, Sean HIGGINS
  • Patent number: 11535835
    Abstract: Provided herein are Class 2 Type V CRISPR:gNA systems comprising Class 2 Type V CRISPR polypeptides (e.g. CasX), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a RHO gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the rhodopsin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a RHO-related disease, such as retinitis pigmentosa.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: December 27, 2022
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes, Sean Higgins
  • Publication number: 20220348925
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: September 9, 2020
    Publication date: November 3, 2022
    Applicant: Scribe Therapeutics Inc.
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20220090036
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 24, 2022
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES