Patents by Inventor Colette O. Fennessy

Colette O. Fennessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230321726
    Abstract: A complex concentrated alloy (CCA) and/or high entropy alloy (HEA) additive manufacturing nozzle can include a nozzle body defining at least four powder channels. Each powder channel can be configured to be connected to a powder supply of a plurality of powder supplies to receive a powder from the powder supply for ejecting the powder toward a build area to form an additively manufactured article having a CCA and/or an HEA.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 12, 2023
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Luke Borkowski, Tahany I. El-Wardany, William K. Tredway, Colette O. Fennessy
  • Patent number: 11666973
    Abstract: A complex concentrated alloy (CCA) and/or high entropy alloy (HEA) additive manufacturing nozzle can include a nozzle body defining at least four powder channels. Each powder channel can be configured to be connected to a powder supply of a plurality of powder supplies to receive a powder from the powder supply for ejecting the powder toward a build area to form an additively manufactured article having a CCA and/or an HEA.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 6, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Luke Borkowski, Tahany I. El-Wardany, William K. Tredway, Colette O. Fennessy
  • Patent number: 11641149
    Abstract: An electrical machine stator can include a stator core having a stator core shape and made of a core material, a plurality of windings disposed in the stator core and made of a conductive material, and an insulative material surrounding the plurality of windings and configured to electrically insulate each winding from each other adjacent winding, and/or to insulate one or more of the windings from the stator core. The insulative material can be an amorphous metal.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: May 2, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Ranadip Acharya, Tahany I. El-Wardany, Colette O. Fennessy, Joseph Kenneth Coldwate
  • Publication number: 20210359581
    Abstract: An electrical machine stator can include a stator core having a stator core shape and made of a core material, a plurality of windings disposed in the stator core and made of a conductive material, and an insulative material surrounding the plurality of windings and configured to electrically insulate each winding from each other adjacent winding, and/or to insulate one or more of the windings from the stator core. The insulative material can be an amorphous metal.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 18, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Ranadip Acharya, Tahany I. El-Wardany, Colette O. Fennessy, Joseph Kenneth Coldwate
  • Patent number: 11161156
    Abstract: A method including filling an internal passage of an additively manufactured (AM) article with a state change fluid, causing the state change fluid to change from a first state having a first viscosity to a second state that is either solid or has a second viscosity that is higher than the first viscosity within the internal passage, causing the state change fluid to change back from the second state to the first state, removing residual powder from the additively manufactured article by flushing the state change fluid from the internal passage, measuring electrical impedance of a piezoelectric wafer connected to the additively manufactured article, and determining that more than a threshold amount of residual powder remains within the AM article based on the measured electrical impendence of the additively manufactured article being outside of a selected range from an expected impendence value.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: November 2, 2021
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Colette O. Fennessy, Shawn K. Reynolds
  • Patent number: 11131983
    Abstract: A spatial difference measurement method, can include generating first key features of a first skeleton of a nominal 3D model of an object and extrapolating the first key features onto the nominal 3D model. The method can include creating an actual 3D model of the object during or after a construction process (real or simulated). The method can include generating second key features of a second skeleton of the actual 3D model of the object and extrapolating the second key features onto the actual 3D model of the object. The method can include comparing the first key features extrapolated on the nominal 3D model to the second key features extrapolated on the actual 3D model to determine one or more distances between the first and second key features to measure a spatial difference between the nominal 3D model and the object during or after construction.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: September 28, 2021
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Yanzhi Chen, Ranadip Acharya, Tahany I. El-Wardany, Colette O. Fennessy, William K. Tredway
  • Publication number: 20210114095
    Abstract: A complex concentrated alloy (CCA) and/or high entropy alloy (HEA) additive manufacturing nozzle can include a nozzle body defining at least four powder channels. Each powder channel can be configured to be connected to a powder supply of a plurality of powder supplies to receive a powder from the powder supply for ejecting the powder toward a build area to form an additively manufactured article having a CCA and/or an HEA.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Luke Borkowski, Tahany I. El-Wardany, William K. Tredway, Colette O. Fennessy
  • Patent number: 10941992
    Abstract: A heat exchanger includes a core having a plurality of first layers for receiving a first fluid and at least one header arranged in fluid communication with the plurality of first layers. The at least one header is integrally formed ith the core via an additive manufacturing process. The header has a first microstructure and the core has a second, different microstructure.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 9, 2021
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Sergey Mironets, Vijay Narayan Jagdale, Colette O. Fennessy
  • Publication number: 20210026323
    Abstract: A spatial difference measurement method, can include generating first key features of a first skeleton of a nominal 3D model of an object and extrapolating the first key features onto the nominal 3D model. The method can include creating an actual 3D model of the object during or after a construction process (real or simulated). The method can include generating second key features of a second skeleton of the actual 3D model of the object and extrapolating the second key features onto the actual 3D model of the object. The method can include comparing the first key features extrapolated on the nominal 3D model to the second key features extrapolated on the actual 3D model to determine one or more distances between the first and second key features to measure a spatial difference between the nominal 3D model and the object during or after construction.
    Type: Application
    Filed: July 31, 2019
    Publication date: January 28, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Yanzhi Chen, Ranadip Acharya, Tahany I. El-Wardany, Colette O. Fennessy, William K. Tredway
  • Publication number: 20190329300
    Abstract: A method including filling an internal passage of an additively manufactured (AM) article with a state change fluid, causing the state change fluid to change from a first state having a first viscosity to a second state that is either solid or has a second viscosity that is higher than the first viscosity within the internal passage, causing the state change fluid to change back from the second state to the first state, removing residual powder from the additively manufactured article by flushing the state change fluid from the internal passage, measuring electrical impedance of a piezoelectric wafer connected to the additively manufactured article, and determining that more than a threshold amount of residual powder remains within the AM article based on the measured electrical impendence of the additively manufactured article being outside of a selected range from an expected impendence value.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Colette O. Fennessy, Shawn K. Reynolds
  • Patent number: 10372110
    Abstract: A method of producing a heat exchanger includes designing the heat exchanger to include a wall with a target thickness. A model is created relating process parameters to geometry of a single track melt pool and relating the single track melt pool geometry to a heat exchanger wall thickness. At least one variable process parameter is defined. The model, heat exchanger wall target thickness, and variable process parameters are used to identify a set of process parameters to produce the heat exchanger wall target thickness. The melt pool geometry is predicted based on the model and process parameters. The heat exchanger wall target thickness is predicted based on the melt pool geometry. The process parameters that will produce the heat exchanger wall target thickness are identified. The additive manufacturing process is controlled based upon the identified set of process parameters to create the heat exchanger wall target thickness.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: August 6, 2019
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Vijay Jagdale, Ranadip Acharya, Tahany Ibrahim El-Wardany, Colette O. Fennessy, Sergey Mironets, Diana Giulietti, Kiley James Versluys
  • Publication number: 20190193124
    Abstract: A method includes issuing a state change fluid into an internal passage of an additively manufactured article and causing the state change fluid to change from a first state having a first viscosity to a second state that is either solid or has a second viscosity that is higher than the first viscosity within the internal passage. The method can also include causing the state change fluid to change back from the second state to the first state and flushing the state change fluid from the internal passage to remove residual powder from the additively manufactured article.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Diana Giulietti, Eric W. Karlen, Sergey Mironets, Colette O. Fennessy, Kiley James Versluys
  • Patent number: 10323887
    Abstract: A heat exchanger and method for making a heat exchanger assembly is described, involving generating a digital model of a heat exchanger assembly that comprises a heat exchanger core within a housing. The digital model is inputted into an additive manufacturing apparatus or system comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a metal powder, which fuses the powder to form incremental portions of the heat exchanger core and housing according to the digital model. Unfused or partially fused metal powder is enclosed in a first region of the heat exchanger assembly between the heat exchanger core and the housing.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 18, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Colette O. Fennessy
  • Patent number: 10259045
    Abstract: A method for forming a part includes: forming a first portion of the part at a first level; forming a second portion of the part at a second level; wherein forming the first and second portions includes exposing the first and second levels to a sintering process and portions of the first and second levels to an electron beam; causing a magnetorheological (MR) fluid to move into a passage inside the first and second portions; exposing the first and second portions to a magnetic field causing motion of particles in the MR fluid to move and break up sintered material in the passage; and removing some or all of the sintered material in the passage.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: April 16, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric Karlen, Sergey Mironets, Diana Giulietti, Kiley James Versluys, Colette O. Fennessy, William Louis Wentland
  • Patent number: 10220422
    Abstract: A method includes issuing a state change fluid into an internal passage of an additively manufactured article and causing the state change fluid to change from a first state having a first viscosity to a second state that is either solid or has a second viscosity that is higher than the first viscosity within the internal passage. The method can also include causing the state change fluid to change back from the second state to the first state and flushing the state change fluid from the internal passage to remove residual powder from the additively manufactured article.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: March 5, 2019
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Diana Giulietti, Eric Karlen, Sergey Mironets, Colette O. Fennessy, Kiley J. Versluys
  • Publication number: 20180328676
    Abstract: A method of manufacturing a component susceptible to multiple failure modes includes generating a stereolithography file including a geometry of the component. The geometry of the stereolithography file is divided into a plurality of layers. Each of the layers includes a first portion and a second portion of the component. Energy from an energy source is applied to a powdered material such that the powdered material fuses to form the first portion and the second portion of each of the plurality of layers. Applying energy from the energy source to form the first portion of the plurality of layers includes operating the energy source with a first set of parameters and applying energy from the energy source to form the second portion of the plurality of layers includes operating the energy source with a second set of parameters. The first set and second set of parameters are different.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 15, 2018
    Inventors: Sergey Mironets, Vijay Narayan Jagdale, Colette O. Fennessy
  • Patent number: 10094628
    Abstract: A method of manufacturing a component susceptible to multiple failure modes includes generating a stereolithography file including a geometry of the component. The geometry of the stereolithography file is divided into a plurality of layers. Each of the layers includes a first portion and a second portion of the component. Energy from an energy source is applied to a powdered material such that the powdered material fuses to form the first portion and the second portion of each of the plurality of layers. Applying energy from the energy source to form the first portion of the plurality of layers includes operating the energy source with a first set of parameters and applying energy from the energy source to form the second portion of the plurality of layers includes operating the energy source with a second set of parameters. The first set and second set of parameters are different.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 9, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sergey Mironets, Vijay Narayan Jagdale, Colette O. Fennessy
  • Publication number: 20180283810
    Abstract: A method of manufacturing a component susceptible to multiple failure modes includes generating a stereolithography file including a geometry of the component. The geometry of the stereolithography file is divided into a plurality of layers. Each of the layers includes a first portion and a second portion of the component. Energy from an energy source is applied to a powdered material such that the powdered material fuses to form the first portion and the second portion of each of the plurality of layers. Applying energy from the energy source to form the first portion of the plurality of layers includes operating the energy source with a first set of parameters and applying energy from the energy source to form the second portion of the plurality of layers includes operating the energy source with a second set of parameters. The first set and second set of parameters are different.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Inventors: Sergey Mironets, Vijay Narayan Jagdale, Colette O. Fennessy
  • Publication number: 20170364058
    Abstract: A method of producing a heat exchanger includes designing the heat exchanger to include a wall with a target thickness. A model is created relating process parameters to geometry of a single track melt pool and relating the single track melt pool geometry to a heat exchanger wall thickness. At least one variable process parameter is defined. The model, heat exchanger wall target thickness, and variable process parameters are used to identify a set of process parameters to produce the heat exchanger wall target thickness. The melt pool geometry is predicted based on the model and process parameters. The heat exchanger wall target thickness is predicted based on the melt pool geometry. The process parameters that will produce the heat exchanger wall target thickness are identified. The additive manufacturing process is controlled based upon the identified set of process parameters to create the heat exchanger wall target thickness.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 21, 2017
    Inventors: Vijay Jagdale, Ranadip Acharya, Tahany Ibrahim El-Wardany, Colette O. Fennessy, Sergey Mironets, Diana Giulietti, Kiley James Versluys
  • Publication number: 20170336155
    Abstract: A heat exchanger and method for making a heat exchanger assembly is described, involving generating a digital model of a heat exchanger assembly that comprises a heat exchanger core within a housing. The digital model is inputted into an additive manufacturing apparatus or system comprising an energy source. The additive manufacturing apparatus applies energy from the energy source to successively applied incremental quantities of a metal powder, which fuses the powder to form incremental portions of the heat exchanger core and housing according to the digital model. Unfused or partially fused metal powder is enclosed in a first region of the heat exchanger assembly between the heat exchanger core and the housing.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Inventor: Colette O. Fennessy