Patents by Inventor Colin Andrew Braley

Colin Andrew Braley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220076030
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for the generation and use of a surfel map with semantic labels. One of the methods includes receiving a surfel map that includes a plurality of surfels, wherein each surfel has associated data that includes one or more semantic labels; obtaining sensor data for one or more locations in the environment, the sensor data having been captured by one or more sensors of a first vehicle; determining one or more surfels corresponding to the one or more locations of the obtained sensor data; identifying one or more semantic labels for the one or more surfels corresponding to the one or more locations of the obtained sensor data; and performing, for each surfel corresponding to the one or more locations of the obtained sensor data, a label-specific detection process for the surfel.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Inventors: Dragomir Anguelov, Colin Andrew Braley, Christoph Sprunk
  • Publication number: 20220058309
    Abstract: Aspects and implementations of the present disclosure address shortcomings of existing technology by enabling autonomous vehicle simulations based on retro-reflection optical data. The subject matter of this specification can be implemented in, among other things, a method that involves initiating a simulation of an environment of an autonomous driving vehicle, the simulation including a plurality of simulated objects, each having an identification of a material type of the respective object. The method can further involve accessing simulated reflection data based on the plurality of simulated objects and retro-reflectivity data for the material types of the simulated objects, and determining, using an autonomous vehicle control system for the autonomous vehicle, a driving path relative to the simulated objects, the driving path based on the simulated reflection data.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 24, 2022
    Inventors: Arthur Dov Safira, Harrison Lee McKenzie Chapter, Colin Andrew Braley, Hui Seong Son, Aleksandar Rumenov Gabrovski, Brian Choung Choi
  • Patent number: 11195064
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining an alignment between cross-modal sensor data. In one aspect, a method comprises: obtaining (i) an image that characterizes a visual appearance of an environment, and (ii) a point cloud comprising a collection of data points that characterizes a three-dimensional geometry of the environment; processing each of a plurality of regions of the image using a visual embedding neural network to generate a respective embedding of each of the image regions; processing each of a plurality of regions of the point cloud using a shape embedding neural network to generate a respective embedding of each of the point cloud regions; and identifying a plurality of region pairs using the embeddings of the image regions and the embeddings of the point cloud regions.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 7, 2021
    Assignee: Waymo LLC
    Inventors: Colin Andrew Braley, Volodymyr Ivanchenko, Yu Zhang
  • Publication number: 20210012166
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining an alignment between cross-modal sensor data. In one aspect, a method comprises: obtaining (i) an image that characterizes a visual appearance of an environment, and (ii) a point cloud comprising a collection of data points that characterizes a three-dimensional geometry of the environment; processing each of a plurality of regions of the image using a visual embedding neural network to generate a respective embedding of each of the image regions; processing each of a plurality of regions of the point cloud using a shape embedding neural network to generate a respective embedding of each of the point cloud regions; and identifying a plurality of region pairs using the embeddings of the image regions and the embeddings of the point cloud regions.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 14, 2021
    Inventors: Colin Andrew Braley, Volodymyr Ivanchenko, Yu Zhang
  • Publication number: 20210003682
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining that prediction outputs generated by a prediction system are sensitive to variations in the values of one or more of a set of target sensor calibration parameters. In one aspect, a sensitivity analysis system is configured to perform operations comprising updating the values of one or more target sensor calibration parameters of each sensor data tuple of a plurality sensor data tuples, comprising, for each sensor data tuple: providing the sensor data tuple with the current values of the target sensor calibration parameters to the prediction subsystem to generate a current prediction output; determining a gradient of a function of the current prediction output with respect to the target sensor calibration parameters; and updating the current values of the target sensor calibration parameters of the sensor data tuple using the gradient.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventor: Colin Andrew Braley