Patents by Inventor Colin B. Kennedy

Colin B. Kennedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12216080
    Abstract: A system for assaying a biological sample for a presence of a target analyte includes an assaying device and a computer controller. The assaying device includes a housing, a receptacle disposed in the housing, and a source of activation energy. The receptacle is configured to accept an electrophoresis cell. The electrophoresis cell has a recess area configured to accept a chip configured to accept the biological sample. The chip includes a polymeric separation medium with activatable functional groups that covalently bond to the target analyte when activated. The source of activation energy is configured to supply activation energy to activate the activatable functional groups. The computer controller is operably coupled to the source of activation energy and is configured to activate the source of activation energy to direct an application of activation energy to the polymeric separation medium to activate the activatable functional groups.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: February 4, 2025
    Assignee: ProteinSimple
    Inventors: Joshua I. Molho, Kelly Gardner, Danh C. Tran, Eric Jabart, David Nilson, Yuri Kouchnir, Michael Huston, Colin B. Kennedy, David John Roach
  • Publication number: 20220260525
    Abstract: A system for assaying a biological sample for a presence of a target analyte includes an assaying device and a computer controller. The assaying device includes a housing, a receptacle disposed in the housing, and a source of activation energy. The receptacle is configured to accept an electrophoresis cell. The electrophoresis cell has a recess area configured to accept a chip configured to accept the biological sample. The chip includes a polymeric separation medium with activatable functional groups that covalently bond to the target analyte when activated. The source of activation energy is configured to supply activation energy to activate the activatable functional groups. The computer controller is operably coupled to the source of activation energy and is configured to activate the source of activation energy to direct an application of activation energy to the polymeric separation medium to activate the activatable functional groups.
    Type: Application
    Filed: December 23, 2021
    Publication date: August 18, 2022
    Applicant: ProteinSimple
    Inventors: Joshua I. MOLHO, Kelly GARDNER, Danh C. TRAN, Eric JABART, David NILSON, Yuri KOUCHNIR, Michael HUSTON, Colin B. KENNEDY, David John ROACH
  • Patent number: 11237131
    Abstract: A system for assaying a biological sample for a presence of a target analyte includes an assaying device and a computer controller. The assaying device includes a housing, a receptacle disposed in the housing, and a source of activation energy. The receptacle is configured to accept an electrophoresis cell. The electrophoresis cell has a recess area configured to accept a chip configured to accept the biological sample. The chip includes a polymeric separation medium with activatable functional groups that covalently bond to the target analyte when activated. The source of activation energy is configured to supply activation energy to activate the activatable functional groups. The computer controller is operably coupled to the source of activation energy and is configured to activate the source of activation energy to direct an application of activation energy to the polymeric separation medium to activate the activatable functional groups.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: February 1, 2022
    Assignee: ProteinSimple
    Inventors: Joshua I. Molho, Kelly Gardner, Danh C. Tran, Eric Jabart, David Nilson, Yuri Kouchnir, Michael Huston, Colin B. Kennedy, David John Roach
  • Patent number: 11235333
    Abstract: Embodiments of the invention comprise microfluidic devices, instrumentation interfacing with those devices, processes for fabricating that device, and methods of employing that device to perform PCR amplification. Embodiments of the invention are also compatible with quantitative Polymerase Chain Reaction (“qPCR”) processes. Microfluidic devices in accordance with the invention may contain a plurality of parallel processing channels. Fully independent reactions can take place in each of the plurality of parallel processing channels. The availability of independent processing channels allows a microfluidic device in accordance with the invention to be used in a number of ways. For example, separate samples could be processed in each of the independent processing channels. Alternatively, different loci on a single sample could be processed in multiple processing channels.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: February 1, 2022
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Morten J. Jensen, Andrea W. Chow, Colin B. Kennedy, Stephane Mouradian
  • Publication number: 20180272354
    Abstract: Embodiments of the invention comprise microfluidic devices, instrumentation interfacing with those devices, processes for fabricating that device, and methods of employing that device to perform PCR amplification. Embodiments of the invention are also compatible with quantitative Polymerase Chain Reaction (“qPCR”) processes. Microfluidic devices in accordance with the invention may contain a plurality of parallel processing channels. Fully independent reactions can take place in each of the plurality of parallel processing channels. The availability of independent processing channels allows a microfluidic device in accordance with the invention to be used in a number of ways. For example, separate samples could be processed in each of the independent processing channels. Alternatively, different loci on a single sample could be processed in multiple processing channels.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Morten J. Jensen, Andrea W. Chow, Colin B. Kennedy, Stephane Mouradian
  • Patent number: 9987636
    Abstract: Embodiments of the invention comprise microfluidic devices, instrumentation interfacing with those devices, processes for fabricating that device, and methods of employing that device to perform PCR amplification. Embodiments of the invention are also compatible with quantitative Polymerase Chain Reaction (“qPCR”) processes. Microfluidic devices in accordance with the invention may contain a plurality of parallel processing channels. Fully independent reactions can take place in each of the plurality of parallel processing channels. The availability of independent processing channels allows a microfluidic device in accordance with the invention to be used in a number of ways. For example, separate samples could be processed in each of the independent processing channels. Alternatively, different loci on a single sample could be processed in multiple processing channels.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: June 5, 2018
    Assignee: CALIPER LIFE SCIENCES, INC.
    Inventors: Morten J Jensen, Andrea W Chow, Colin B. Kennedy, Stephane Mouradian
  • Publication number: 20160370319
    Abstract: A system for assaying a biological sample for a presence of a target analyte includes an assaying device and a computer controller. The assaying device includes a housing, a receptacle disposed in the housing, and a source of activation energy. The receptacle is configured to accept an electrophoresis cell. The electrophoresis cell has a recess area configured to accept a chip configured to accept the biological sample. The chip includes a polymeric separation medium with activatable functional groups that covalently bond to the target analyte when activated. The source of activation energy is configured to supply activation energy to activate the activatable functional groups. The computer controller is operably coupled to the source of activation energy and is configured to activate the source of activation energy to direct an application of activation energy to the polymeric separation medium to activate the activatable functional groups.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 22, 2016
    Inventors: Joshua I. Molho, Kelly Gardner, Danh C. Tran, Eric Jabart, David Nilson, Yuri Kouchnir, Michael Huston, Colin B. Kennedy, David John Roach
  • Patent number: 9255865
    Abstract: The invention provides a system and method for dissolution testing. The system includes multiple dissolution vessels and a dose carrier positioned above the dissolution vessels. The dose carrier holds multiple removable carousels that receive individual doses for dissolution tested. Carousels that receive tablets or sinkers typically have a first configuration, while carousels that receive baskets typically have a second configuration. The two different configurations of carousels are interchangeable on the same dose ring. The system further includes a drive head positioned above the dose carrier, the drive head having a basket arbor and a mixing paddle removably and interchangeably attached. A pipettor integral with the system transfers sample aliquots having volumes in the range of 50 ?l to 1 ml from the dissolution vessels to wells of an external receptacle.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: February 9, 2016
    Assignee: Sotax Corporation
    Inventors: Colin B. Kennedy, Syed Husain, Dale von Behren, Enrique Bernal
  • Patent number: 9207249
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: December 8, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Greenstein, Colin B Kennedy, James C Mikkelsen, Jr.
  • Publication number: 20150224505
    Abstract: Embodiments of the invention comprise microfluidic devices, instrumentation interfacing with those devices, processes for fabricating that device, and methods of employing that device to perform PCR amplification. Embodiments of the invention are also compatible with quantitative Polymerase Chain Reaction (“qPCR”) processes. Microfluidic devices in accordance with the invention may contain a plurality of parallel processing channels. Fully independent reactions can take place in each of the plurality of parallel processing channels. The availability of independent processing channels allows a microfluidic device in accordance with the invention to be used in a number of ways. For example, separate samples could be processed in each of the independent processing channels. Alternatively, different loci on a single sample could be processed in multiple processing channels.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 13, 2015
    Inventors: Morten J. Jensen, Andrea W. Chow, Colin B. Kennedy, Stephane Mouradian
  • Publication number: 20140033807
    Abstract: The invention provides a system and method for dissolution testing. The system includes multiple dissolution vessels and a dose carrier positioned above the dissolution vessels. The dose carrier holds multiple removable carousels that receive individual doses for dissolution tested. Carousels that receive tablets or sinkers typically have a first configuration, while carousels that receive baskets typically have a second configuration. The two different configurations of carousels are interchangeable on the same dose ring. The system further includes a drive head positioned above the dose carrier, the drive head having a basket arbor and a mixing paddle removably and interchangeably attached. A pipettor integral with the system transfers sample aliquots having volumes in the range of 50 ?l to 1 ml from the dissolution vessels to wells of an external receptacle.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 6, 2014
    Applicant: Sotax Coporation
    Inventors: Colin B. Kennedy, Syed Husain, Dale von Behren, Rick Bernal
  • Publication number: 20130315781
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 28, 2013
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, JR.
  • Patent number: 8545771
    Abstract: The invention provides fluidic devices having incorporated electrodes. One device comprises a card and first and second caddy segments. The first caddy segment comprises first and second electrodes. The second caddy segment comprises first and second reservoirs disposed on a first surface of the second segment, a channel disposed on a second surface of the second segment, and first and second vias extending between the first and second surfaces. The first caddy segment is attached to the first surface of the second caddy segment. The card is attached to the second surface of the second caddy segment such that the card provides a closed surface for the device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Colin B. Kennedy, Josh Molho, Alexander V. Dukhovny
  • Patent number: 8518327
    Abstract: The invention provides a system and method for dissolution testing. The system includes multiple dissolution vessels and a dose carrier positioned above the dissolution vessels. The dose carrier holds multiple removable carousels that receive individual doses for dissolution tested. Carousels that receive tablets or sinkers typically have a first configuration, while carousels that receive baskets typically have a second configuration. The two different configurations of carousels are interchangeable on the same dose ring. The system further includes a drive head positioned above the dose carrier, the drive head having a basket arbor and a mixing paddle removably and interchangeably attached. A pipettor integral with the system transfers sample aliquots having volumes in the range of 50 ?l to 1 ml from the dissolution vessels to wells of an external receptacle.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Sotax Corporation
    Inventors: Colin B. Kennedy, Syed Husain, Dale von Behren, Rick Bernal
  • Patent number: 8496875
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 30, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, Jr.
  • Patent number: 8367021
    Abstract: The invention provides fluidic devices having incorporated electrodes. One device comprises a card and a caddy. The card includes a channel disposed within the card, first and second vias in fluid communication with the channel through an upper surface of the card, and first and second electrodes disposed on the upper surface of the card. The first via and first electrode are positioned adjacent to a first end of the channel, and the second via and second electrode are positioned adjacent to a second end of the channel. The caddy comprises first and second reservoirs. The caddy is attached to the card such that the first reservoir is positioned over the first via and a portion of the first electrode, and the second reservoir is positioned over the second via and a portion of the second electrode. A portion of each of the electrodes is accessible for dry electrical contact.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: February 5, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Colin B. Kennedy, Josh Molho, Alexander V. Dukhovny
  • Publication number: 20120080315
    Abstract: The invention provides fluidic devices having incorporated electrodes, systems for using such devices, and methods for manufacturing such devices. The invention also provides fluidic devices configured to absorb joule heating within the device.
    Type: Application
    Filed: November 7, 2011
    Publication date: April 5, 2012
    Inventors: Colin B. Kennedy, Josh Molho, Alexander V. Dukhovny
  • Publication number: 20110139274
    Abstract: The invention provides fluidic devices having incorporated electrodes, systems for using such devices, and methods for manufacturing such devices. The invention also provides fluidic devices configured to absorb joule heating within the device.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 16, 2011
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Colin B. Kennedy, Josh Molho, Alexander V. Dukhovny
  • Patent number: 7727371
    Abstract: An electrode alignment apparatus may be used with a microfluidic device for accurate and repeatable alignment of electrode pins with reservoirs on the microfluidic device. The apparatus includes a base unit and an electrode block assembly that are moveable with respect to each other from an open position to a closed position. The electrode block assembly includes an interface array that is coupled to an interface array platform such that the interface array is moveable with respect to the interface array platform in three dimensions.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 1, 2010
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Colin B. Kennedy, Evelio Perez
  • Patent number: 7449096
    Abstract: In a system for operation or handling of a laboratory microchip (41) for chemical processing or analysis, the microchip (41) is mounted in a first physical unit (42). The microchip (41) is arranged on a mounting plate, such that it is readily accessible from the top and thus the fitting and removal of the microchip is considerably simplified. Furthermore, the first physical unit (42) comprises an optical device (43) for contactless detection of the results of the chemical processes conducted on the microchip. The supply systems necessary for the operation of the microchip are arranged in a module unit that has a separable connection with a second physical unit. The proposed modular layout enables ease of interchangeability of the required supply systems and thus, overall, ease of adaptability of the proposed system for various types of microchips.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 11, 2008
    Inventors: Manfred Berndt, Patrick Kaltenbach, Colin B. Kennedy