Patents by Inventor Colin BUNKER
Colin BUNKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240408763Abstract: Disclosed are systems, methods, and apparatuses, including computer programs encoded on computer storage media, for operation of a robotic welding system. In one aspect, a method for calibrating a tool center point (TCP) of the robotic welding system includes identifying, based on multiple images, a location of a tip of a protrusion extending from the weldhead. Each image of the multiple images including at least a portion of the protrusion extending from a tip of the weldhead. The tip of the weldhead is associated with a first frame of reference. The method also includes determining, based on the location of the terminal end of the protrusion, a second frame of reference that is offset from the first frame of reference. The method further includes generating one or more TCP calibration values based on the second frame of reference. Other aspects and features are also claimed and described.Type: ApplicationFiled: June 18, 2024Publication date: December 12, 2024Inventors: Raghav Sood, Colin Bunker, Matthew Klein
-
Publication number: 20240391109Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Applicant: Path Robotics, Inc.Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima AJAM GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
-
Patent number: 12070867Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.Type: GrantFiled: September 18, 2023Date of Patent: August 27, 2024Assignee: Path Robotics, Inc.Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
-
Publication number: 20240075629Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.Type: ApplicationFiled: September 18, 2023Publication date: March 7, 2024Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima AJAM GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
-
Publication number: 20240033935Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.Type: ApplicationFiled: July 27, 2023Publication date: February 1, 2024Applicant: Path Robotics, Inc.Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima AJAM GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
-
Patent number: 11801606Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.Type: GrantFiled: September 2, 2022Date of Patent: October 31, 2023Assignee: PATH ROBOTICS, INC.Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
-
Publication number: 20230330764Abstract: This disclosure provides systems, methods, and apparatuses, including computer programs encoded on computer storage media, for operation of an assembly robotic system. In one aspect of the disclosure, the assembly robotic system includes a tool coupled to a robot device and configured to be selectively coupled to a first object. The assembly robotic system also includes a welding tool, one or more sensors configured to generate sensor data, and a controller. The controller is configured to control the tool to couple the tool to the first object based on the sensor data, control the robot device to bring the first object into a spatial relationship with a second object, and generate a weld instruction to cause the weld tool to weld a seam formed between the first and second objects. Other aspects and features are also claimed and described.Type: ApplicationFiled: August 23, 2022Publication date: October 19, 2023Inventors: Jordan OTT, Madhavun CANDADAI, Colin BUNKER, Sabhari NATRAJAN, Alexander LONSBERRY, Andrew LONSBERRY
-
Patent number: 11759958Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.Type: GrantFiled: November 4, 2022Date of Patent: September 19, 2023Assignee: PATH ROBOTICS, INC.Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
-
Publication number: 20230278224Abstract: A method for calibrating a tool center point (TCP) of a robotic welding system. The method includes receiving a plurality of images captured from a plurality of image sensors of the robotic welding system, the plurality of images containing at least a portion of a protrusion extending from a tip of a weldhead of the robotic welding system, and identifying by a controller of the robotic welding system the protrusion extending from the weldhead in the plurality of images. The method additionally includes defining by the controller a longitudinal axis of the protrusion based on the protrusion identified in the plurality of images, and identifying by the controller a location in three-dimensional (3D) space of the weldhead based on the protrusion identified in the plurality of images and the defined longitudinal axis of the protrusion.Type: ApplicationFiled: March 7, 2023Publication date: September 7, 2023Inventors: Colin BUNKER, Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima Ajam GARD, Milad KHALEDYAN, Carlos Fabian BENITEZ-QUIROZ
-
Patent number: 11648683Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.Type: GrantFiled: February 24, 2022Date of Patent: May 16, 2023Assignee: Path Robotics, Inc.Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
-
Publication number: 20230047632Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.Type: ApplicationFiled: November 4, 2022Publication date: February 16, 2023Applicant: Path Robotics, Inc.Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima Ajam GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
-
Publication number: 20220410402Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.Type: ApplicationFiled: September 2, 2022Publication date: December 29, 2022Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima Ajam GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
-
Publication number: 20220305593Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.Type: ApplicationFiled: February 24, 2022Publication date: September 29, 2022Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima Ajam GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU